The Swiss Glaciers

2011/12 and 2012/13

Glaciological Report (Glacier) No. 133/134

The Swiss Glaciers

2011/2012 and 2012/2013

Glaciological Report No. 133/134

Edited by Andreas Bauder¹

With contributions from Andreas Bauder¹, Mauro Fischer², Martin Funk¹, Matthias Huss^{1,2}, Giovanni Kappenberger³

 1 Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich 2 Department of Geosciences, University of Fribourg 3 6654 Cavigliano

Publication of the Cryospheric Commission (EKK) of the Swiss Academy of Sciences (SCNAT)

- c/o Laboratory of Hydraulics, Hydrology and Glaciology (VAW) at the Swiss Federal Institute of Technology Zurich (ETH Zurich) Hönggerbergring 26, CH-8093 Zürich, Switzerland http://glaciology.ethz.ch/swiss-glaciers/
- © Cryospheric Commission (EKK) 2016
- DOI: http://doi.org/10.18752/glrep_133-134
- ISSN 1424-2222

Imprint of author contributions:

Andreas Bauder	:	Chapt. 1, 2, 3, 4, 5, 6, App. A, B, C
Mauro Fischer	:	Chapt. 4
Martin Funk	:	Chapt. 1, 4
Matthias Huss	:	Chapt. 2, 4
Giovanni Kappenberger	:	Chapt. 4

Ebnoether Joos AG print and publishing Sihltalstrasse 82 Postfach 134 CH-8135 Langnau am Albis Switzerland

Cover Page: Vadret da Palü (Gilbert Berchier, 25.9.2013)

Summary

During the 133rd and 134th year under review by the Cryospheric Commission, Swiss glaciers continued to lose both length and mass. The two periods were characterized by normal to above-average amounts of snow accumulation during winter, and moderate to substantial melt rates in summer. The results presented in this report reflect the weather conditions in the measurement periods as well as the effects of ongoing global warming over the past decades. In autumn 2012, a length variation was determined for 96 of the 114 glaciers currently under active observation, while one year later such a result was obtained for 87 glaciers. In the two observation periods, 2011/12 and 2012/13, Swiss glaciers experienced further losses in length. Most of the measurement values vary between 0 and -30 m in both of these periods. Several glaciers displayed remarkably high retreat values during these two measurement periods. These can be attributed to the dropping off of a protruding mass of dead ice, or to the melting of sections of the glacier that had been thinning constantly for many years.

Detailed mass balance figures were obtained for the nine glaciers: Basòdino, Findelen, Gries, Pizol, Plaine Morte, Rhone, Sankt Anna, Silvretta and Tsanfleuron, and point measurements were taken at several additional glaciers. In the first period (2011/12), the glaciers suffered significant mass losses, whereas in the second (2012/13), the results obtained were the most favorable for the entire ten previous years before.

Measurements of the surface flow velocity were taken at selected glaciers in the Mauvoisin and Mattmark regions as well as for the Aare glaciers. The trend continued toward diminishing velocities, a clear reflection of the reduction in ice thickness due to the ongoing negative mass balances of these glaciers.

Published Reports

Annual reports of the Swiss glaciers started in the year of 1880 by F.A. Forel (1841-1912).

Authors of the annual reports:	No.	Year
F.A. Forel et L. Du Pasquier	1 - 17	1880 - 1896
F.A. Forel, M. Lugeon et E. Muret	18 - 27	1897 - 1906
F.A. Forel, E. Muret, P.L. Mercanton et E. Ar-	28	1907
gand		
F.A. Forel, E. Muret et P.L. Mercanton	29 - 32	1908 - 1911
E. Muret et P.L. Mercanton	33 - 34	1912 - 1913
P.L. Mercanton	35 - 70	1914 - 1949
P.L. Mercanton et A. Renaud	71 - 75	1950 - 1954
A. Renaud	76 - 83	1955 - 1961/62
P. Kasser	84 - 91	1962/63 - 1969/70
P. Kasser und M. Aellen	92 - 104	1970/71 - 1982/83
M. Aellen	105 - 115	1983/84 - 1993/94
M. Aellen, M. Hoelzle und D. Vonder Mühll	116	1994/95
M. Hoelzle und D. Vonder Mühll	117	1995/96
M. Hoelzle, D. Vonder Mühll, A. Bauder und	118	1996/97
G.H. Gudmundsson		
M. Hoelzle, D. Vonder Mühll und M. Maisch	119	1997/98
M. Hoelzle, D. Vonder Mühll, M. Schwikowski	120	1998/99
und H.W. Gäggeler		
A. Bauder, A. Vieli und M. Hoelzle	121	1999/00
A. Bauder und M. Hoelzle	122	2000/01
A. Bauder, C. Schär und H. Blatter	123 - 124	2001/02 - 2002/03
A. Bauder, J. Faillettaz, M. Funk und A. Pralong	125 - 126	2003/04 - 2004/05
A. Bauder	127 - 132	2005/06 - 2010/11
Authors and editors of the glaciological two year	reports:	
P. Kasser, M. Aellen und H. Siegenthaler	95/96 - 99/100	1973/74 - 1978/79
M. Aellen	101/102	1979/80 - 1980/81
M. Aellen und E. Herren	103/104 - 111/112	1981/82 - 1990/91
E. Herren und M. Hoelzle	113/114	1991/92 - 1992/93
E. Herren, M. Hoelzle and M. Maisch	115/116 - 119/120	1993/94 - 1998/99
E. Herren, A. Bauder, M. Hoelzle and M. Maisch	121/122	1999/00 - 2000/01
E. Herren and A. Bauder	123/124	2001/02 - 2002/03
A. Bauder and R. Rüegg	125/126	2003/04 - 2004/05
A. Bauder and C. Ryser	127/128	2005/06 - 2006/07
A. Bauder	129/130 - 131/132	2007/08 - 2010/11

Contents

Su	Immary	iii
Ρι	ublished Reports	iv
1	Introduction	1
2	Weather and Climate2.1Weather and Climate in 2011/122.2Weather and Climate in 2012/13	3 3 4
3	Length Variation3.1Introduction3.2Length Variations in 2011/123.3Length Variations in 2012/133.4Length Variations in 2011/12 and in 2012/13, Summary3.5Length Variations - Statistics for 1880-2013	7 7 8 9 14
4	Mass Balance4.1Introduction, cumulative mean specific mass balances4.2Mass Balance in 2011/124.3Mass Balance in 2012/134.4Ghiacciaio del Basòdino4.5Findelengletscher4.6Griesgletscher (Aegina)4.7Pizolgletscher4.8Glacier de la Plaine Morte4.9Rhonegletscher4.10Sankt Annafirn4.12Glacier de Tsanfleuron4.13Claridenfirn4.14Grosser Aletsch (Jungfraufirn)	19 19 21 22 23 27 32 37 40 43 47 51 56 60 63
5	Volume Change 5.1 Introduction 5.2 Long-term time-series 5.3 Change in ice volume and geodetic mass balance	65 65 67 67

6	Velocity	73
	6.1 Introduction	73
	6.2 Glacier du Giétro	. 75
	6.3 Glacier de Corbassière	. 78
	6.4 Aaregletscher	81
	6.5 Mattmark	85
Re	eferences	89
Ac	cknowledgements	92
Α	Remote Sensing A.1 Aerial photographs	93 93
В	Remarks on Individual Glaciers	97
С	Investigators	115
	C.1 Length Variation (2013)	115
	C.2 Mass Balance and Velocity	118

1 Introduction

Systematic and long-term records of glacier changes in Switzerland started in 1880 with annual length change measurements of selected glaciers. At that time these measurements were motivated by questions about past and future ice ages. In the meantime, the goals of the worldwide glacier monitoring programs have evolved and multiplied. Glacier change data are primarily necessary for investigations of the glacier-climate interactions. The data are also important for the assessment of water resources, sea level rise and natural hazards. Finally, the broad public manifests an increasing interest in glacier changes.

The main focus of the ongoing Swiss Glacier Monitoring Network is to collect the following data: (1) mass balance, (2) surface flow velocity, (3) length variation, (4) glacier inventory (extent and associated parameters) and (5) englacial temperature. The program for glacier monitoring in Switzerland (GLAMOS) has been adopted by the Cryospheric Commission in March 2007. A detailed description about the aims, current status and perspectives of the monitoring program was presented in chapter 1.1 of "The Swiss Glaciers" volume number 125/126.

The results of the Swiss glacier monitoring contribute also to the international efforts to document glacier fluctuations as part of global environmental monitoring initiatives of the Global Terrestrial Network for Glaciers (GTN-G) within the Global Terrestrial and Climate Observing System (GTOS/ GCOS) and are reported to the World Glacier Monitoring Service (WGMS).

This report is the new volume No. 133/134 in the series "The Swiss Glaciers" and presents the results of the two observational periods 2011/12 and 2012/13. It carries on the long tradition of yearbooks documenting monitored fluctuations of Swiss glaciers since 1880 (see page iv). Data and digital versions of the present and earlier volumes can be found at http://glaciology.ethz.ch/swiss-glaciers. Thanks to continuous efforts of many people, public and private organisations in Switzer-land, long time-series of data related to glacier changes do exist.

The present data-report expands the short overview of general outcomes published annually in German, French and Italian in the magazine "Die Alpen - Les Alpes - Le Alpi" of the Swiss Alpine Club with detailed facts and figures.

2 Weather and Climate

In this section the weather and climate conditions for the two periods under review 2011/12 and 2012/13 are described. The focus is on the variables that are most relevant for glacier mass balance, namely temperature and precipitation. In general, glacier mass balance is largely determined by the amount of snow fall in winter and the temperature during summer. Additionally, particular climate conditions can have an important influence. High temperatures in April, May or June can reduce the winter snow pack rapidly and expose the much darker ice surface already in July. During July and August solar radiation receipts are very high and melting of the unprotected ice can reach extreme values. When these two factors occur together very negative mass balances like in the period 2002/03 are expected. On the other hand, snow fall down to low elevations (2000 m a.s.l.) during summer protects the glacier surface from melting and will lead to less negative mass balances. Precipitation that falls as rain influences the mass balance negatively.

We have selected the four high-elevation climate stations at Grand St-Bernard (2472 m), Jungfraujoch (3580 m), Säntis (2502 m) and Weissfluhjoch (2690 m) to illustrate the monthly anomalies in air temperature (Figure 2.1) and 15 stations (Airolo, Château-d'Oex, Disentis, Engelberg, Elm, Grand St-Bernard, Grimsel Hospiz, Montana, Lauterbrunnen, Säntis, Scuol, Sils-Maria, Weissfluhjoch, Zermatt) throughout all regions of the Swiss Alps for monthly anomalies in precipitation (Figure 2.2) in the two reporting periods. For the two parameters of annual precipitation and mean summer temperature, the long-term record since 1880 is shown in Figures 2.3 and 2.4 as a mean of 12 homogenized climate stations (Begert et al., 2005). All stations belong to the observational networks maintained by MeteoSwiss. The description of the weather conditions in the two reporting periods refer to the figures and the annual and monthly reports of the meteorological conditions by MeteoSwiss.

2.1 Weather and Climate in 2011/12

The first snowfalls occurring in early October on the north side of the Alps down to the valleys were followed by rainfalls extending up to the elevation of the glaciers. Due to warm, dry conditions in November, autumn 2011 experienced the second-warmest temperatures after 2006 since meteorological measurements began in 1864. At the end of November, the Swiss Alps were free of snow well up to 2500 m a.s.l. A comparable situation can be expected at intervals of approx. every 30 years, and occurred for the last time in 1953. December gave way to heavy snowstorms, with enormous amounts of new snow falling in four main events. Two more major snowfalls in January

Figure 2.1: Mean monthly anomaly of temperature from the long-term climatic mean (period 1961-1990) for four selected stations of the MeteoSwiss network. Anomalies in the two reporting periods 2011/12 and 2012/13 are shown.

led to the significantly above-average accumulation of snow on Swiss glaciers by the end of the month. Two to three times the amount of new snow as compared to the long-term average was recorded at more than half of the measuring stations of MeteoSwiss and SLF in December and January. Both February (cold) and March (above-average warm) were characterized by very little precipitation (Figures 2.1 and 2.2), with the result that at the end of March, snow depths were above average only in the east, while in the west and north they were generally average, and in Ticino and the south valleys of the Grisons some were well below average. April was variable and it snowed repeatedly right down into the valleys. Above-average temperatures in May and June led to the disappearance of the snow cover. The third-warmest summer since recording of meteorological data began was the reason that the glaciers once again were subject to widespread melt-out, and only a limited amount of snow from the previous winter was present at the end of September at an elevation of more than 3000 m a.s.l.

Summertime temperatures were 1.9°C higher than the long-term mean (Figure 2.3). Positive deviations of approx. one degree have been common since the 1990s. On the other hand, precipitation amounts were only slightly above average compared with the long-term mean (Figure 2.4). The glaciers were unable to profit from the initially high amounts of snow accumulation early in winter. The infrequent bursts of polar air accompanied by snowfall down to middle elevations had virtually no effect on the surplus temperatures of the summer, which once again led to strong rates of melting.

2.2 Weather and Climate in 2012/13

Winter began already in early October, with snow falling down to below 1000 m a.s.l. Following a brief break in November with sunny, mild late-autumn weather, repeated snowfalls were responsible

Figure 2.2: Mean monthly anomaly of precipitation from the long-term climatic mean (period 1961-1990) for 15 selected stations of the MeteoSwiss network. Anomalies in the two reporting periods 2011/12 and 2012/13 are shown.

for two to three times the normal amount of snow on the ground, as compared to the long-term average, by the end of December, particularly in the north and west regions of the Swiss Alps. It snowed frequently between January and March, at times abundantly and down to lower elevations. At the end of April there was more snow on the ground at 2000 m a.s.l. in the west than compared with the long-term average, whereas in other regions snow amounts were slightly below average. Maximum values for the winter at elevations above 2000 m a.s.l. were only achieved by the end of May due to further above-average precipitation in the month of May (Figure 2.2). The abundant snow on one hand, and the variable conditions in June with average temperatures on the other, led to a delay in melt-out. It was not until the 3-week heatwave beginning in mid-July that summer conditions reached high-alpine regions. During this intensely hot period the zero-degree line frequently lay above 4000 m a.s.l. (Figure 2.1). It snowed during the summer twice at the end of June and in August down to below the glacier tongue, thus interrupting the melting process only on the very short term. On the whole the summer months were deemed excessively warm (seventh-warmest since measurements began) and too dry. In September snow fell several times down as far as the glacier tongue, but only in small amounts.

Annual precipitation for 2012/13 was 9% above the long-term mean (Figure 2.4), and the summer temperatures (May to September 2013) were $+1.1^{\circ}$ C above average (Figure 2.3).

Figure 2.3: Anomalies of mean summer air temperature (May-September) from the mean value 1961-1990 in degrees Celcius for the period 1864-2013. The gray shaded area highlights the years of the current report.

Figure 2.4: Anomalies of annual precipitation (hydrological year) from the mean value 1961-1990 in percentage for the period 1864-2013. The gray shaded area highlights the years of the current report.

3 Length Variation

3.1 Introduction

In the two periods of this report, 114 of about 125 glaciers of the observational network were actively observed (Figures 3.1, 3.2 and Table 3.1). The other glaciers (compare Table 3.1, remark f) have melted back drastically, and are often debris-covered, on one hand, with the result that it is simply not possible to carry out a proper survey at yearly intervals. On the other hand, a number of glaciers were observed only at irregular intervals, and the obtained measurement values were rather imprecise, which does not justify preserving these figures in the charts and analyses.

During the two years under review, 2011/12 and 2012/13, Swiss glaciers suffered further losses in length. As in previous periods, most of the measurements are within the range of 0 to -30 m for both periods. This overall trend was overshadowed in both years by a few significantly high retreat values, which could be traced to local influences as in previous years, or refer to larger glaciers, and in some cases also pertain to a period of several years. They are usually also the result of a process extending over a longer period of time and thus are not unexpected.

3.2 Length Variations in 2011/12

In autumn 2012 changes in the terminus position as compared to the previous year were determined at 96 glaciers (Figure 3.1). Of these, 93 were found to be in recession, for two there was no change observed, and one single glacier showed a positive value. The values ranged from a retreat of - 842 m at Steinlimmigletscher to a slight advance of +2 m at the margin of Glatscher da Lavaz. Approximately two-thirds of the measurement values lay between -1 and -30 m.

The massive retreat of Steinlimmigletscher is to be seen in the context of a development over the past ten years. The glacier was being fed along its tongue by two lateral inflows. The various side branches were thinning out gradually over the past decade and were no longer connected, with the result that the terminus of the main branch abruptly and substantially shifted backwards. The timing was rather arbitrary and only poorly reflects the continuous change of the glacier. Glacier de Corbassière also experienced a massive retreat of -146 m. Its tongue appeared as a narrow, thinned-out sheet of ice that had been melting away rapidly in the last four years.

Local changes at the terminus of the glacier were responsible for the positive values measured at Glatscher da Lavaz. This is not an advance stemming from abundant ice flows from the firm

area. The flow velocity of such a small glacier is small and thus the ice flow at the tongue is less important than the snow accumulation over the winter and the melt conditions in summer. The advance at the ice margin was possibly favored by the above-average amounts of snow in winter and reduced melting in summer due to the debris cover.

3.3 Length Variations in 2012/13

Length variations were determined for 87 glaciers in autumn 2013 (Figure 3.2). Of these, 70 became shorter, seven did not change their position, and twelve were slightly in advance. At the end of the summer, firn patches were left on a number of glacier tongues, particularly those in Ticino. These hindered measurement activities, with values being provided for fewer glaciers than usual in past years. These conditions also resulted in a greater number of stationary or slightly advancing glacier tongues. With three exceptions, the values ranged from a recession of barely 100 meters each at Gamchigletscher and Vadret da Tschierva, to an advance of 11 meters at Surettagletscher. Approximately half of the measurement values lay between -1 and -25 meters.

Oberer and the Unterer Grindelwaldgletscher and Triftgletscher were the three exceptions. The high retreat values for each is linked with a process that has been underway for about the past 20 years. Due to drastic melting and the continued absence of ice flow from the firn areas, the glaciers have become progressively thinner. During the period under review, the Triftgletscher and the Oberer Grindelwaldgletscher broke apart in a steep section of terrain, while at the Unterer Grindelwaldgletscher a broad section of the flat, debris-covered tongues disintegrated into individual ice masses. At all three glaciers, the dynamic terminus shifted back abruptly and substantially. The timing of these events were rather arbitrary and only poorly reflect the overall and continuous change of these glaciers.

The positive measurement values stem from the specific weather conditions in the year under review, and not from a major flow of ice from the firn area causing the glacier tongue to increase in length due to firn deposits at the margin of the glacier and reduced melting at the terminus.

Ct. b Length variation ^c Altitude ^d No. a Glacier Date of measurements (m) (m a.s.l.) (Day, Month) 2011/12 2012/13 2013 2011 2012 2013 Catchment area of the river Rhone (II) 1 e,f Rhone VS -40.1-30.62205.3 22.09. 27.08. 23.09. 2 f Mutt VS 2656 12 07.09. -22.9n 20.08. n 3 e,f Gries VS -28.3 -19.12415.8 22.09. 27.08. 21.08. 4 e,f Fiescher 1674 12 VS -57.3 09.11. 09.11. 23.10. Х 5 e,f Grosser Aletsch VS -32.8 -14.01590.1 28.09. 27.08. 21.08. VS 7 ^{e,f} Kaltwasser -2.3+5.72660 12 15.09. 18.09. 26.09. 173 ^e Seewjinen VS -10.52717.9 20.09. 04.09. +2.315.09. 10^{e,f} Schwarzberg VS -51.4-25.6 2662.2 15.09. 20.09. 04.09. 11 ^{e,f} Allalin VS 2671.2 15.09. 20.09. 04.09. -13.3-4.0174 ^e Hohlaub VS -12.0-2.32838.1 15.09. 20.09. 04.09. 12 ^e VS 04.09. Kessien -3.8+0.12866.5 15.09. 20.09. 13 ^f Fee VS -20+5.12155 06.10. 02.10. 26.09. 14 ^{e,f} Gorner VS 21.10. -30-30 2182 17.09. 28.09. 16 e,f Findelen VS -71.8+3.62555.8 22.09. 14.09. 20.08. 17 e Ried VS -11-82 2320 02.10. 07.10. 20.10. VS 18^{e,f} Lang -12-192099 20.10. 18.10. 09.10. 19 e,f Turtmann VS х -30.22270 10 29.09. 12.10. 03.10. 20 ^e Brunegg (Turtmann) VS -2^{2a} 2500 10 29.09. n 03.10. n 22 ^{e,f} Zinal VS -14.2-41.9 2095 22.10. 16.09. 25.10. 23 ^{e,f} Momina VS -6.6 2580 30.09. 16.09. 25.10. $^{-4}$ 24 e,f Moiry VS -142430 05.09. 25.10. -17.112.10. 25 ^{e,f} Ferpècle 27.09. 25.10. VS -39.3-25.92205 29.09. 26 ^e Mont Miné VS 2090 12 -36.1-28.729.09. 27.09. 25.10. 27 e,f Arolla (Mont Collon) VS 20.09. 28.10. -14.3-4.329.09. 28 e,f Tsidjiore Nouve VS 20.09. -12.5-9.22315 29.09. 28.10. 29 e,f Cheillon VS -15.2-12.42706 27.09. 25.10. 08.10. 25.10. 30 ^{e,f} En Darrey VS х х 2510 11 n 08.10. 31 e,f Grand Désert VS -12.8-6.02811 22.09. 15.09. 22.09. 32 ^{e,f} Mont Fort (Tortin) VS -14.2+3.42785 24.09. 16.09. 09.10. 33 e,f Tsanfleuron VS -8.4-14.62550 24.09. 26.08. 22.10. 34 ^e Otemma VS -10.2-18.22460 09.09. 03.09. 20.09. 35 ^e Mont Durand VS -85 06.09. 27.08. 13.09. -372380 VS -42.5 36 ^e Breney -68.52575 10.09. 28.08. 21.09. 37 e VS Giétro -94.2-10.72704.0 15.09. 20.09. 04.09. VS 38 e Corbassière -145.8 -22.22301.6 15.09. 20.08. 13.08.

3.4 Length Variations in 2011/12 and in 2012/13, Summary

The Swiss Glaciers 2011/12 and 2012/13

No. ^a	Glacier	er Ct. ^b		^b Length variation ^c		Date of measurements		
			(m 2011/12	2012/13	(m a.s.i.) 2013	(L 2011	2012 2012	2013
39 ^{e,f}	Valsorey	VS	-20.6	-20.3	2430.9 12	11.08.	11.10.	17.10.
40 ^e	Tseudet	VS	-7.2	-14.4	2483.5 ¹¹	11.08.	11.10.	17.10.
41	Boveyre	VS	-34.7	n	2680 ¹²	08.09.	11.10.	n
42 [†]	Saleina	VS	-33.2	-33.4	1835.3 ¹²	18.10.	11.10.	16.10.
43 ^{e,†}	Trient	VS	-18	-17	2090	01.10.	25.09.	22.09.
44 ^{e,f}	Paneyrosse	VD	-3.3	1.5		14.09.	11.09.	28.09.
45 ^{e,f}	Grand Plan Névé	VD	-4.6	1.92		15.09.	11.09.	27.09.
47 ^{e,f}	Sex Rouge	VD	-2.9	1.1		05.10.	17.09.	04.09.
48 ^e	Prapio	VD	S	0.5 ^{2a}	2540	01.10.	08.08.	27.09.
Catch	ment area of the river	Aare	(la)					
50 f	Oberaar	BE	-47.5 ^{3a}	-9.1	2306.9 ⁰⁹	n	17.09.	04.09.
51 [†]	Unteraar	BE	-61.8 ^{3a}	-16.2	1930.3 ⁰⁹	n	17.09.	04.09.
52 °	Gauli	BE	-91	-1	2146	06.09.	17.09.	21.09.
53 ^{e,†}	Stein	BE	-72	-54	2062	01.10.	16.09.	22.09.
54 °	Steinlimi	BE	-842	Х	2300	01.10.	16.09.	22.09.
55 ^{e,r}	Trift (Gadmen)	BE	-24.0	-971.4	2114.6	22.09.	27.08.	22.08.
57 ^{e,f}	Oberer Grindelwald	BE	-275 ^{3a} -	-1850	2191.8	n	27.08.	23.09.
58 ^{e,f}	Unterer Grindelwald	BE	Х -	–1005 ^{6a}	1341.5	n	27.08.	23.09.
59 ^e	Eiger	BE	-8	-7.7	2391	15.09.	14.09.	20.09.
60 e	Tschingel	BE	-37	-16.5	2270	16.09.	21.09.	26.09.
61 ^{e,†}	Gamchi	BE	-10.7	-96	2050	30.09.	30.09.	28.09.
109 ^e	Alpetli (Kanderfirn)	BE	-36.8	-52.5	2280	10.09.	15.09.	21.09.
62 ^{e,f}	Schwarz	VS	-8.3	х	2266	03.09.	28.09.	28.09.
63	Lämmern	VS	-13	-12	2550	10.09.	11.10.	14.09.
64 ^{e,f}	Blüemlisalp	BE	-30.2	-38.3	2310	16.09.	18.09.	23.09.
111 ^e	Ammerten	BE	0.2	-1	2350	03.09.	09.09.	22.09.
112	Dungel	BE	-4	n	2607 ¹⁰	15.09.	18.09.	n
Catch	ment area of the river	Reuss	(lb)					
66 ^{e,f}	Tiefen	UR	-41.7	-29.1	2520	10.09.	10.09.	22.09.
67 ^{e,f}	Sankt Anna	UR	-13.3	-7.9	2600	01.10.	05.10.	06.09.
68 ^{e,f}	Kehlen	UR	-57.6	-49.9	2300	22.09.	20.09.	05.09.
69 ^e	Rotfirn (Nord)	UR	-33.8	-4.3	2060	22.09.	20.09.	05.09.
70 ^{e,f}	Damma	UR	-22.4	-8.2	2380	23.09.	21.09.	06.09.
71 ^{e,f}	Wallenbur	UR	-14.7	-12.7	2262	04.10.	21.10.	08.10.
74 ^{e,f}	Griess	UR	-8.9	n	2224 ¹²	15.09.	05.10.	n
75 ^{e,f}	Firnalpeli (Ost)	OW	-6.7	S	2245	02.10.	25.09.	04.09.
76 ^{e,f}	Griessen	OW	-13.7	n	2545 ¹²	03.10.	23.09.	n

No. ^a	Glacier	Ct. ^b	Length v	ariation ^c	Altitude ^d	Date of measurements				
			(n	n)	(m a.s.l.)	(L	ay, Mon	th)		
			2011/12	2012/13	2013	2011	2012	2013		
Catchment area of the river Linth / Limmat (Ic)										
77 ^{e,f}	Biferten	GL	n	-13.2 ^{2a}	1963.1	03.09.	n	24.08.		
78 ^e	Limmern	GL	-10.7	-2.2	2290	13.08.	20.10.	25.09.		
114 ^e	Plattalva	GL	-46.6	-3.1	2610	12.08.	21.10.	24.09.		
79 ^{e,f}	Sulz	GL	-2.1	3.0	1796 ¹²	29.09.	20.09.	02.10.		
80 ^{e,f}	Glärnisch	GL	-18.0	3.9	2344.8	24.09.	17.11.	17.08.		
81 ^{e,f}	Pizol	SG	-5.6	-0.5	2605	26.09.	17.09.	09.10.		
Catch	ment area of the river	Rhine	/ Lake Co	onstance (I	d)					
82 ^{e,f}	Lavaz	GR	+1.7	-15.3	2398	13.09.	09.08.	30.08.		
83 ^{e,f}	Punteglias	GR	-12.1	4.9	2370	24.08.	18.09.	20.09.		
84 f	Lenta	GR	-33.7	-28.1	2398	06.09.	07.09.	30.08.		
85 ^f	Vorab	GR	n	-23.5 ^{2a}	2625	29.09.	n	20.09.		
86 ^{e,f}	Paradies	GR	-10.8	0.8	2705	16.09.	11.09.	11.09.		
87 ^e	Suretta	GR	-17.8	11.4	2553	16.09.	18.09.	20.09.		
88 ^{e,f}	Porchabella	GR	-22.4	-12.9	2679	03.10.	02.10.	11.09.		
115 ^e	Scaletta	GR	-25	0	2605	23.08	28.08	07.09		
20 e,f	Verstankla	GR	_17	_12.7	2450 11	06.00	20.00.	30.08		
00 e	Silvrotto	GR	76	23.6	2450	16.00	20.00.	20.00. 22.08		
01 e.f	Sardona	SC	0.5	20	2404.5	10.09.	20.00.	22.00.		
91	Saruona	30	-0.5	-20	2400	27.09.	20.09.	25.09.		
Catch	ment area of the river	Inn (V	/)							
92 ^{e,f}	Rosea	GR	, -65.4	-31.2	2160 ⁰⁹	25.11.	27.08.	10.09.		
93 e	Tschierva	GR	-30.8	-95.3	2262 09	13 09	27.08	10.09		
04 e,f	Morteratsch	GR	-81.6	-22.4	2110 ¹²	13.09	01 10	03 10		
05 e	Calderas	GR	_16 7	_3.4	2781	28.07	23.08	15 08		
06 e,f	Tiatscha	GR	10.7	42 F	2650 05	10.09	23.00.	13.00. 23.08		
90	Cocuonna		-10.9	-42.5	2030	19.00.	22.00.	23.00. 01.00		
97 00 e.f	Jisahana	GR	-10.0	-7.5	2705	23.00. 10.00	20.00.	21.00. 1E.00		
98	Lischana	GR	-8.5	1.5	2809	12.08.	09.08.	15.08.		
Catch	ment area of the river	chhA	(IV)							
aa	Cambrena	GR	_18 1	-55	2550	21 10	20.00	26.09		
100 f	Dalii	GR	21.6	18.1	2550	21.10.	20.09.	20.09.		
100	Falu Davadiaina (Campa)		-21.0	-10.1	2040	29.09.	21.09.	25.09.		
101 100 f	Paradisino (Campo)	GR	-11.0	-8.5	2800	30.10.	20.09.	20.09.		
102 '	Forno	GR	-25.4	-21.0	2229	19.08.	13.09.	09.09.		
116	Albigna	GR	-17.1	-15.6	2173	30.08.	11.09.	27.09.		
Catch	ment area of the river	Ticino								
120 e			_38	_35	2626.0	20 08	07 00	02 10		
117 e	Vallaggia		-5.0	n	2020.0 2126 n 12	29.00. 07.00	100.09.	0∠.10. r		
110 e	valleyyia Val Torta		-0	11 r	2420.0 ···	01.09.	17.09.	ii r		
710 -	val TUTLa Gradina	11 	X	11	2323 = 0.12	14.00	14.00	11		
352 °	Crosiina		-4.9	n	$2/21.0^{-12}$	14.09.	14.09.	n		
T03 .''	Bresciana	11	S	n	2941./ **	12.09.	06.09.	n		

The Swiss Glaciers 2011/12 and 2012/13

No. ^a Glacier	Ct. ^b	Length variation ^c (m)		Altitude ^d (m a.s.l.)	Date o (D	Date of measurements (Day, Month)	
		2011/12	2012/13	2013	2011	2012	2013
119 ^e Cavagnoli	ΤI	-10.7	n	2538.6 ¹²	21.09.	10.09.	n
104 ^{e,f} Basòdino	TI	-10.6	n	2595.9 ¹²	22.09.	11.09.	n
105 ^{e,f} Rossboden	VS	Х	Х	1930 ⁰⁴	n	24.10.	26.09.

Legend

+	advancing	х	value not determined
st	stationary, ± 1 m	n	not observed
_	retreating	sn	snow covered

a Identification number of the glacier in the observation network.

- b If a specific glacier is situated in more than one canton, the canton indicated in the table is the one where the observed glacier tongue lies.
- c If the value given relates to more than one year, the number of years is indicated as follows: $-23^{4a} =$ Decrease of 23 meters within 4 years.
- d If the altitude of the glacier tongue is not measured in 2013, the year of the last measurement is indicated: $2522^{09} = 2522$ m a.s.l., measured in the year 2009.
- e Compare Appendix B: Remarks on individual glaciers.
- f Glacier with nearly complete data series since the beginning of the measurements at the end of the 19th century and one of the 73 glaciers selected in Figures 3.3 and 3.4.

Figure 3.1: Observed glaciers in fall 2012.

Figure 3.2: Observed glaciers in fall 2013.

3.5 Length Variations - Statistics for 1880-2013

The long-term development of glaciers in Switzerland is illustrated by using a selected sample from the Swiss glacier network (Figures 3.3 and 3.4), and the cumulative glacier length variations which have been classified according to length (Figures 3.5 - 3.8).

The dynamic response to climatic forcing of glaciers with variable geometry involves striking differences in the recorded curves (Figures 3.4 and 3.5 - 3.8) (Hoelzle et al., 2003). Such differences reflect the considerable effects of size-dependent reaction of the delayed tongue response with respect to the undelayed input (mass balance) signal. As a consequence, the overview figure of annual length-change data presented here as annual numbers or percentages of advancing and retreating glaciers should be interpreted carefully.

In order to avoid having a glacier sample whose scope changes annually, not all glaciers were included in Figures 3.3 and 3.4. From the entire dataset, 73 glaciers were selected as a sample with nearly complete series since the beginning of the measurements at the end of the 19th century. In Chapter 3.4, these 73 glaciers are indicated by a footnote f. The measured annual values are assigned to three classes: advancing, stationary and retreating. Figure 3.3 presents absolute numbers and percentages. The sample is dominated by medium-sized glaciers (length between 1 to 5 km) with a typical response time in the order of decades. The periods of advance, such as those in the 1910s to 1920s and the 1970s to 1980s, can be seen clearly. Figure 3.4 shows the annual and individual length change of all 73 selected glaciers sorted for length. For the purpose of intercomparison, values of cumulative length change are presented with respect to size categories

Figure 3.3: Yearly classification of glacier length behaviour (advancing, stationary and retreating) of 73 selected glaciers.

3. Length Variation

chosen in a way to optimally reflect common characteristics of the tongue-reaction signal .lt is well recognized that large glaciers, such as Grosser Aletschgletscher, show continuous retreat since 1880, in contrast to the smaller glaciers such as Pizolgletscher, which has highly variable behavior.

Figure 3.4: Individual yearly pattern of the same 73 selected glaciers (displayed in the descending order of actual glacier length).

Figure 3.5: Large valley glaciers with a length of more than 10 km displaying a more or less continuous retreat over the entire time period. The gray shaded area highlights the years of the current report.

Figure 3.6: Mountain glaciers with a length of 5 to 10 km show advance and retreat phases in two periods (around 1920 and 1970). The gray shaded area high-lights the years of the current report.

Figure 3.7: Small mountain glaciers with a length of 1 to 5 km show the two distinct advance and retreat phases. The gray shaded area highlights the years of the current report.

Figure 3.8: Very small cirque glaciers with a length of less than 1 km display generally small changes and a more irregular variability. The gray shaded area highlights the years of the current report.

Steinlimigletscher in 2006 (top) and 2012 (bottom) – situation with lateral tributaries and the main branch in the background on the right where the terminus has shifted in fall 2012 after being completely disconnected (Photos: A. Felber and R. Straub)

4 Mass Balance

4.1 Introduction, cumulative mean specific mass balances

Detailed mass balance data were collected using the glaciological method for Ghiacciaio del Basòdino, Findelengletscher, Griesgletscher, Pizolgletscher, Glacier de la Plaine Morte, Rhonegletscher, Sankt Annafirn, Silvrettagletscher and Glacier de Tsanfleuron in Switzerland. In addition to these investigations aiming at the determination of the glacier-wide mass balance distribution, individual point measurements of mass balance were taken at Claridenfirn, Jungfraufirn (Grosser Aletschgletscher), Glacier du Giétro and Glacier de Corbassière (cf. Chapter 6), as well as in the Mattmark region (Allalin, Hohlaub, Schwarzberg, Chapter 6). In Figure 4.1 the location within Switzerland of all these glaciers is shown.

Figure 4.1: Investigated glaciers for mass balance with the focus on spatial distribution and analysis of mean specific seasonal components of mass balance (dark blue) or point measurements (light blue).

Figure 4.2: Cumulative mean specific mass balance over the whole observation period for the glaciers Silvretta, Rhone, Pizol, Gries, Findelen and Basòdino. The gray shaded area highlights the years of the current report.

The mass balance measurements at stakes, in snow pits and extensive snow probing in spring were used to calculate the mean specific components of mass balance following the methods described in Huss et al. (2009). Extrapolation from individual measurements to the entire glacier surface was performed using a mass balance model including the most important processes governing glacier mass balance distribution. The procedure is divided into two steps:

- (1) The model is tuned such that both the measurements of winter accumulation and summer ablation are matched optimally over the periods defined by the exact dates of the in-situ measurements which are reported for the years of the current report. This allows extrapolation of mass balance based on a physical representation of the spatial variability, as well as the calculation of mass balance over fixed time periods (e.g. the hydrological year).
- (2) A periodical final reanalysis and homogenisation with independently derived ice volume changes is reported separately in five to ten year intervals after evaluation.

The cumulative mean specific winter and annual balances of the glaciers with extensive observation series are presented in Table 4.1. Numbers for Adlergletscher as a former tributary of Findelengletscher have been evaluated separately but detailed figures are presented together with Findelengletscher. Similar situation exists at Glacier du Sex Rouge, a small glacier that is connected with an ice-divide to Glacier de Tsanfleuron. The long-term trends are very well recognizable for the Griesgletscher and Silvrettagletscher with long time-series (Figure 4.2). Notably, the acceler-

Glacier	No.	Period	Area (km²)	B _w (mm w.e.)	B _a (mm w.e.)	ELA (m a.s.l.)	AAR (%)
Basòdino	104	2011/12	1.842	1620	-1369	3125	1
		2012/13	1.842	1883	82	2885	52
Findelen	16	2011/12	13.042	1263	-672	3325	50
		2012/13	13.042	876	-3	3225	64
Adler	16	2011/12	2.227	933	-858	3635	28
		2012/13	2.227	703	114	3385	63
Gries	3	2011/12	4.834	1722	-2042	3265	0
		2012/13	4.834	1390	-542	2965	45
Pizol	81	2011/12	0.081	2001	-1275	2752	6
		2012/13	0.069	1515	-592	2712	27
Plaine Morte	65	2011/12	7.878	1390	-909	2815	2
		2012/13	7.878	1630	-1287	2815	2
Rhone	1	2011/12	15.808	1529	-1008	3035	40
		2012/13	15.808	1721	-160	2855	65
Sankt Anna	67	2011/12	0.218	1345	-683	2837	15
		2012/13	0.218	1394	-290	2772	41
Silvretta	90	2011/12	2.741	1559	-1415	3025	2
		2012/13	2.741	1271	-246	2785	50
Tsanfleuron	33	2011/12	2.752	1348	-1784	2957	0
		2012/13	2.646	1552	-323	2792	40
Sex Rouge	47	2011/12	0.302	1358	-1285	2867	0
		2012/13	0.302	1530	-706	2852	3

Table 4.1: Summary table with area, mean specific winter and annual balance, ELA and AAR for the exact measurement periods 2011/12 and 2012/13.

ated mass loss since the mid-1980s is remarkable, as are the balanced mass budgets recorded in the 1960s and 70s. The point measurements of the mass balance are of particular significance with regard to answering questions related to climate change (Ohmura et al., 2007; Huss and Bauder, 2009). The four existing long-term time series (Claridenfirn, Grosser Aletschgletscher, Silvrettagletscher) start in the 1910s and cover almost the entire 20th century. Mass balance data of the present report have also been submitted to the World Glacier Monitoring Service (WGMS) as a contribution to the efforts of international glacier monitoring (WGMS, 2013).

4.2 Mass Balance in 2011/12

The glacier-wide mass balance in seasonal resolution was determined by measuring snow accumulation during winter and melting in summer for the nine glaciers: Basòdino, Findelen, Gries, Pizol, Plaine Morte, Rhone, Sankt Anna, Silvretta and Tsanfleuron. Above-average snow amounts were prevalent in winter in high-alpine regions, and thus large amounts of snow accumulation were found on the glaciers. Therefore in spring expections were large for a period of less negative conditions for the glaciers. However, the months of June and July right at the start of summer were warm, causing the snow cover to melt away quickly, and by the end of the season most of the glaciers had melted out to a large extent. Thus, the mass balance for the 2011/12 measurement period finished on the same level as the previous period 2010/11 and ranked third or fourth behind the extremely negative periods of 2002/03 and 2005/06.

As in previous years with extremely negative mass balances, the result can be traced to the summer which caused very strong melting. The values fluctuated from one glacier to another and no regional pattern was discernible. The area averaged specific mass loss at Griesgletscher amounted to over two meters, while the values at Findelengletscher and Sankt Annafirn were barely 0.7 meters. Similar inter-annual fluctuations have been observed by point measurements at the Claridenfirn, the Jungfraufirn of the Grosser Aletschgletscher and on the glaciers in the Mattmark and Mauvoisin regions investigated for ice flow velocity (cf. Chapter 6).

4.3 Mass Balance in 2012/13

The same nine glaciers were investigated during this period as well with regard to their mass balance. Due to the cool weather conditions with abundant precipitation, the glaciers melted out at a slow rate in early summer. In spite of the very warm months of July and August with intensive melting, there was thus more winter snow remaining on the glacier than in previous years. On the whole, only relatively small mass losses occurred or were even balanced. During the last ten years the conditions have never been so favorable to the Swiss glaciers. The most recent measurement period with positive mass balances was period 2000/01. During the observation period 2012/13 a balanced mass budget, or even slightly positive values were found for glaciers South of the main alpine ridge, for example at Ghiacciaio del Basòdino in northern Ticino and at Findelengletscher near Zermatt. Glaciers on the northern flank of the Alps, however, such as Pizol and Silvretta, still showed considerable but, compared to recent years, less strong mass losses.

We thus conclude that the intensive, repeated snowfalls and the cool weather conditions in May and June were responsible for the results in this measurement period. In spite of the high temperatures in July and August, the protective snow layer was depleted only at a very slow rate. The regional differences in mass balance are for the most part the result of the distribution of snow amounts in spring and early summer. Once again, additional point measurements at the Claridenfirn, the Jungfraufirn of the Grosser Aletschgletscher and in the Mattmark and Mauvoisin area were consistent with these general conlusions drawn from the glaciers with area-wide results.

4.4 Ghiacciaio del Basòdino

Introduction

Ghiacciaio del Basòdino is a small north-east facing temperate mountain glacier in the southern Swiss Alps. The small individual branch descending to the north with a separate tongue is not considered part of the glacier and not included in the mass balance determination. The main branch presently covers an area of 1.8 km^2 and extends from 2562 to 3186 m a.s.l. Detailed mass balance investigations are being carried out since 1990. Determination of volumetric changes in decadal resolution reach further back to 1929 (Bauder et al., 2007). Topographic maps or photogrammetrical surveys exist for 1929, 1949, 1971, 1985, 1991, 2002, 2008 and 2013.

Figure 4.3: Surface topography and observational network of the Ghiacciaio del Basòdino.

Investigations in 2011/12

The measurement period extended from 6th September 2011 to 7th September 2012 with a field visit in spring on 14th May 2012. In September 2012, winter snow accumulation remained only at higher elevations. Snow depth was measured at about 47 locations during the spring measurement period and supplemented by a density profile from the central sector of the glacier.

Investigations in 2012/13

The measurement period was from 7th September 2012 to 13th September 2013 with a field visit in spring on 7th May 2013. Again snow depth was sampled at about 28 locations distributed over

the entire glacier with a density profile at the center. Abundant firn accumulation was present at the end of the balance year in September 2013.

Figure 4.4: Ghiacciaio del Basòdino - Mean specific annual balance (bars) and cumulative mass balance for the period 1991-2013.

Table 4.2: Ghiacciaio del Basòdino - Specific winter and annual balance versus altitude in the two periods 2011/12 and 2012/13 evaluated for the exact measurement period defined by the dates of field survey.

Altitude	2011/1	2		2012/1	3	
	Area	b _w	ba	Area	b _w	ba
(m a.s.l.)	(km^2)	(mm w.e.)	(mm w.e.)	(km ²)	(mm w.e.)	(mm w.e.)
2500 - 2600	0.010	1899	-2434	0.010	1661	-618
2600 - 2700	0.141	1903	-2001	0.141	1643	-405
2700 - 2800	0.360	1849	-1886	0.360	1715	-316
2800 - 2900	0.429	1711	-1641	0.429	1888	-185
2900 - 3000	0.528	1563	-817	0.528	2052	464
3000 - 3100	0.314	1297	-1058	0.314	1949	462
3100 - 3200	0.059	1068	-1153	0.059	1631	317
2500 - 3200	1.842	1620	-1369	1.842	1883	82

Stake		Period		Coordinates	Mass b	alance
	Start	Spring	End		b _w	ba
				(m / m / m a.s.l.)	(mm v	w.e.)
10	06.09.2011	14.05.2012	07.09.2012	681000 / 141130 / 2689	2250	-1944
11	06.09.2011	14.05.2012	07.09.2012	681336 / 141054 / 2610	2750	-1700
12	06.09.2011	14.05.2012	07.09.2012	679781 / 140828 / 2990	1470	-805
14	06.09.2011	14.05.2012	07.09.2012	679984 / 141020 / 2899	1444	-1239
15	06.09.2011	14.05.2012	07.09.2012	679391 / 140978 / 3040	1050	-1330
2	06.09.2011	14.05.2012	07.09.2012	680210 / 141446 / 2721	1800	-2975
6	06.09.2011	14.05.2012	07.09.2012	679650 / 141500 / 2840	1880	-2424
9	06.09.2011	14.05.2012	07.09.2012	680557 / 141167 / 2758	1598	-1615
10	07.09.2012	07.05.2013	13.09.2013	681000 / 141130 / 2689	1660	-860
11	07.09.2012	07.05.2013	13.09.2013	681336 / 141054 / 2610	2038	-260
12	07.09.2012	07.05.2013	13.09.2013	679781 / 140828 / 2990	1940	620
14	07.09.2012	07.05.2013	13.09.2013	679983 / 141017 / 2904	1924	0
15	07.09.2012	07.05.2013	13.09.2013	679391 / 140978 / 3040	1769	180
4	07.09.2012	07.05.2013	13.09.2013	680061 / 141294 / 2819	1617	-612
6	07.09.2012	07.05.2013	13.09.2013	679650 / 141500 / 2840	1911	-128
8	07.09.2012	07.05.2013	13.09.2013	679500 / 140800 / 3050	2139	810
9	07.09.2012	07.05.2013	13.09.2013	680557 / 141167 / 2758	1639	-612

 Table 4.3: Ghiacciaio del Basòdino - Individual stake measurements of winter and annual balance.

Ghiacciaio del Basòdino with abundant firn accumulation in September 2013 (Photo: G. Kappenberger)

Figure 4.5: Specific (left) and volumetric (right) winter (dotted, \diamond), summer (dashed, \triangle) and annual (continuous line, +) balance versus altitude for 2011/12 (top) and 2012/13 (bottom). Small symbols mark the individual measurements.

Figure 4.6: Equilibrium line altitude (ELA) and accumulation area ratio (AAR) versus mean specific balance including all previous observations.

4.5 Findelengletscher

Introduction

Findelengletscher (13.0 km²) and its former tributary Adlergletscher (2.2 km²) are located in the southern Valais in the Zermatt area. The two glaciers cover an elevation range from 2565 m a.s.l. to 4120 m a.s.l. Findelengletscher is west-facing and is characterized by gently-sloping high-elevation accumulation basins and a comparably narrow glacier tongue. The Findelengletscher region is relatively dry with equilibrium line altitudes being among the highest in the Alps. Mass balance measurements on Findelengletscher were initiated in fall 2004 and the observational network was extended to Adlergletscher one year later (Machguth, 2008).

Figure 4.7: Surface topography and observational network on Findelengletscher and the former tributary Adlergletscher.

Investigations in 2011/12

Winter mass balance of Findelen- and Adlergletscher was determined in a two-day campaign on 2nd and 3rd May 2012. Snow probings were obtained for 506 locations and snow density was measured in ten snow pits distributed over the entire elevation range of the glacier. In addition, a survey

The Swiss Glaciers 2011/12 and 2012/13

with a helicopter-borne ground penetrating radar system to record snow depth distribution was performed covering both Findelen- and Adlergletscher on a 500 m grid. The profiles had a total length of 49 km (Sold et al., 2015). Three firn cores to a depth of about 10-12 m were acquired by the Paul Scherrer Institute for investigating firn layer characteristics (Sold et al., 2015). All mass balance stakes were visited and re-installed on 2nd October 2012. The annual mass balance was determined for 15 locations on Findelen-, and four on Adlergletscher. Snow density was measured in two snow pits. The equilibrium line was at about 3300 m a.s.l. on Findelen-, and 3450 m a.s.l. on Adlergletscher.

Altitude	2011/12	2		2012/13	3	
	Area	b _w	ba	Area	b _w	b _a
(m a.s.l.)	(km^2)	(mm w.e.)	(mm w.e.)	(km ²)	(mm w.e.)	(mm w.e.)
2500 - 2600	0.081	496	-7302	0.081	266	-5887
2600 - 2700	0.309	700	-5764	0.309	315	-5243
2700 - 2800	0.239	672	-5055	0.239	356	-4104
2800 - 2900	0.354	862	-3519	0.354	470	-2746
2900 - 3000	0.593	924	-3035	0.593	605	-2009
3000 - 3100	0.982	1026	-2270	0.982	716	-1813
3100 - 3200	1.737	1295	-1336	1.737	808	-490
3200 - 3300	1.835	1301	-594	1.835	858	259
3300 - 3400	1.945	1445	473	1.945	1033	494
3400 - 3500	2.357	1522	525	2.357	1089	1325
3500 - 3600	1.609	1351	551	1.609	1039	1357
3600 - 3700	0.439	1235	651	0.439	922	1279
3700 - 3800	0.300	811	265	0.300	673	930
3800 - 3900	0.252	763	318	0.252	623	936
3900 - 4000	0.011	617	268	0.011	532	864
2500 - 4000	13.042	1263	-672	13.042	876	-3

Table 4.4: Findelengletscher - Specific winter and annual balance versus altitude in the two periods 2011/12 and 2012/13 evaluated for the exact measurement period defined by the dates of field survey.

Investigations in 2012/13

The winter survey was performed on 17th and 18th April 2013. In total, 737 snow probings distributed over the entire surface of Findelen- and Adlergletscher were obtained, and snow density was measured in ten snow pits. The snow depth distribution of Findelen- and Adlergletscher was also monitored with a helicopter-borne ground penetrating radar system covering the glacier surface on a 500 m grid. The profiles had a total length of 44 km (Sold et al., 2015). Due to a relatively late depletion of the snow cover and repeated summer snow fall events, melting was significantly smaller than in all years since the beginning of the measurements in 2004. On 25th September 2013 all measurement sites were visited. Mass balance was determined at 13 stakes on Findelen-

and at four stakes on Adlergletscher. Firn density was measured in one snow pit. Due to more than four meters of winter snow remaining at the end of the ablation season, the second accumulation stake could not be re-located.

Table 4.5: Adlergletscher - Specific winter and annual balance versus altitude in the two periods 2011/12 and 2012/13 evaluated for the exact measurement period defined by the dates of field survey.

Altitude	2011/12			2012/13		
	Area	b _w	ba	Area	b _w	ba
(m a.s.l.)	(km^2)	(mm w.e.)	(mm w.e.)	(km^2)	(mm w.e.)	(mm w.e.)
2900 - 3000	0.007	826	-3918	0.007	490	-2799
3000 - 3100	0.090	928	-2903	0.090	615	-1737
3100 - 3200	0.121	1013	-2359	0.121	674	-1091
3200 - 3300	0.253	1009	-2245	0.253	708	-705
3300 - 3400	0.420	998	-1578	0.420	709	-256
3400 - 3500	0.319	930	-849	0.319	840	412
3500 - 3600	0.278	947	-177	0.278	760	581
3600 - 3700	0.297	782	-128	0.297	664	620
3700 - 3800	0.239	1002	568	0.239	662	843
3800 - 3900	0.111	858	630	0.111	583	849
3900 - 4000	0.069	732	550	0.069	551	852
4000 - 4100	0.019	606	450	0.019	506	813
4100 - 4200	0.004	556	443	0.004	455	744
2900 - 4200	2.227	933	-858	2.227	703	114

Figure 4.8: Findelengletscher - Specific (left) and volumetric (right) winter (dotted, \diamond), summer (dashed, \triangle) and annual (continuous line, +) balance versus altitude for 2011/12 (top) and 2012/13 (bottom). Small symbols mark the individual measurements.

Stake		Period		Coordinates	Mass balance	
	Start	Spring	End		b _w	ba
				(m / m / m a.s.l.)	(mm v	w.e.)
F1	29.09.2011	03.05.2012	02.10.2012	629997 / 95505 / 2590	510	-7760
F2	29.09.2011	03.05.2012	02.10.2012	630315 / 95444 / 2624	650	-6010
F31	29.09.2011	03.05.2012	02.10.2012	630879 / 95429 / 2692	800	-4990
F32	29.09.2011	03.05.2012	02.10.2012	630980 / 95275 / 2705	510	-6120
F4	29.09.2011	03.05.2012	02.10.2012	631485 / 95379 / 2800	890	-4190
F5	29.09.2011	03.05.2012	02.10.2012	632149 / 95072 / 2917	900	-2690
F6	29.09.2011	03.05.2012	02.10.2012	632383 / 95002 / 2957	1010	-3710
F7	29.09.2011	03.05.2012	02.10.2012	632498 / 94355 / 3038	1040	-2210
F8	29.09.2011	03.05.2012	02.10.2012	633301 / 93855 / 3122	1260	-1300
F81	29.09.2011	03.05.2012	02.10.2012	633352 / 94526 / 3150	1210	-1850
F82	29.09.2011	03.05.2012	02.10.2012	632533 / 93754 / 3088	930	-2130
F93	29.09.2011	03.05.2012	02.10.2012	634409 / 94315 / 3260	1330	-820
F94	29.09.2011	03.05.2012	02.10.2012	633601 / 93096 / 3253	960	-1000
F10	29.09.2011	03.05.2012	02.10.2012	635004 / 94073 / 3327	1810	920
F11	29.09.2011	03.05.2012	02.10.2012	634142 / 92309 / 3452	1560	670
A1	29.09.2011	03.05.2012	02.10.2012	632315 / 95518 / 3026	730	-3850
A2	29.09.2011	03.05.2012	02.10.2012	632524 / 95523 / 3082	1060	-2410
A3	29.09.2011	03.05.2012	02.10.2012	632693 / 95539 / 3132	1050	-2760
A6	29.09.2011	03.05.2012	02.10.2012	633541 / 95623 / 3337	1060	-1770
F2	02.10.2012	18.04.2013	27.09.2013	630313 / 95442 / 2624	470	-5670
F31	02.10.2012	18.04.2013	27.09.2013	630880 / 95426 / 2692	540	-3970
F32	02.10.2012	18.04.2013	27.09.2013	630987 / 95262 / 2705	490	-5090
F4	02.10.2012	18.04.2013	25.09.2013	631493 / 95381 / 2803	650	-3190
F5	02.10.2012	18.04.2013	25.09.2013	632115 / 95108 / 2909	740	-1500
F6	02.10.2012	18.04.2013	25.09.2013	632359 / 95025 / 2953	560	-2370
F7	02.10.2012	18.04.2013	25.09.2013	632470 / 94383 / 3037	790	-2180
F8	02.10.2012	18.04.2013	25.09.2013	633245 / 93889 / 3117	920	-400
F81	02.10.2012	18.04.2013	25.09.2013	633346 / 94524 / 3150	820	-970
F82	02.10.2012	18.04.2013	25.09.2013	632557 / 93740 / 3088	790	-900
F93	02.10.2012	18.04.2013	25.09.2013	634374 / 94325 / 3259	1060	540
F94	02.10.2012	18.04.2013	25.09.2013	633576 / 93127 / 3250	960	300
F10	02.10.2012	18.04.2013	25.09.2013	635070 / 93938 / 3341	1590	940
F11	02.10.2012	18.04.2013	25.09.2013	634140 / 92337 / 3450	1540	1840
A1	02.10.2012	18.04.2013	25.09.2013	632345 / 95517 / 3034	630	-2420
A2	02.10.2012	18.04.2013	25.09.2013	632509 / 95498 / 3076	730	-1420
A3	02.10.2012	18.04.2013	25.09.2013	632693 / 95539 / 3132	750	-1410
A6	02.10.2012	18.04.2013	25.09.2013	633541 / 95543 / 3333	720	-470

 Table 4.6: Findelengletscher and Adlergletscher - Individual stake measurements of winter and annual balance.

4.6 Griesgletscher (Aegina)

Introduction

Griesgletscher is a temperate valley glacier located in the central Swiss Alps. The glacier covers presently an area of 4.8 km² flowing in north-east direction from 3305 m a.s.l. down to 2425 m a.s.l. Mass balance measurements started in 1961 in connection with the construction of a reservoir for hydro-power production. Determination of volumetric changes in decadal resolution reach further back to 1884 (Bauder et al., 2007). Topographic maps or photogrammetrical surveys exist for 1884, 1923, 1961, 1967, 1979, 1986, 1991, 1998, 2003, 2007 and 2012. Huss et al. (2009) reanalyzed and homogenized the seasonal stake data and ice volume changes for the period 1961-2007. Results of the mean specific winter and annual balance with associated area, ELA and AAR values for comparable fixed time periods have been reported in Section 4.9 of volume 125/126.

Figure 4.9: Surface topography and observational network of the Griesgletscher.

Investigations in 2011/12

The measurement period extended from 6th September 2011 to 10th September 2012 with a field visit in spring on 11th May 2012. Snow depth soundings were collected at 19 stake locations and supplemented by two density profiles obtained by firn drilling on the tongue and in the upper area. The melt extent at the end of the summer covered almost the entire surface area, leaving only a few marginal firn patches.

Figure 4.10: Griesgletscher - Mean specific annual balance (bars) and cumulative mass balance for the period 1961-2013.

Investigations in 2012/13

The measurement period extended from 10th September 2012 to 29th September 2013 with a field visit in spring on 24th April 2013. Snow depth was sampled at 19 stake locations and the density was determined at two locations using a firn drill. For the first time since several years abundant snow accumulated during winter remained. This accumulation extends over the entire firn plateau above 3000 m a.s.l.

Table 4.7: Griesgletscher - Specific winter and annual balance versus altitude in the two periods 2011/12 and 2012/13 evaluated for the exact measurement period defined by the dates of field survey.

Altitude	2011/1	2		2012/1	3	
	Area	b _w	b _a	Area	b _w	b _a
(m a.s.l.)	(km^2)	(mm w.e.)	(mm w.e.)	(km^2)	(mm w.e.)	(mm w.e.)
2400 - 2500	0.164	1259	-4403	0.164	918	-3446
2500 - 2600	0.731	1256	-3788	0.731	947	-2776
2600 - 2700	0.237	1534	-2832	0.237	1233	-1626
2700 - 2800	0.363	1733	-1983	0.363	1332	-776
2800 - 2900	0.636	1820	-1778	0.636	1406	-487
2900 - 3000	1.005	1819	-1853	1.005	1491	-82
3000 - 3100	1.421	1917	-1294	1.421	1607	524
3100 - 3200	0.206	1950	-491	0.206	1656	1113
3200 - 3300	0.071	1355	-809	0.071	1172	754
3300 - 3400	0.001	871	-700	0.001	754	523
2400 - 3400	4.834	1722	-2042	4.834	1390	-542

Snow depth survey using traditional hand-probes (background) and ground penetrating radar (foreground) (Photo: M. Huss)

Stake	Period			Coordinates	Mass balance		
	Start	Spring	End		b _w	ba	
				(m / m / m a.s.l.)	(mm \	w.e.)	
1	09.09.2011	11.05.2012	10.09.2012	667475 / 142825 / 3038	1770	-1827	
2	09.09.2011	11.05.2012	10.09.2012	667554 / 142664 / 3033	1890	-1395	
3	09.09.2011	11.05.2012	10.09.2012	667619 / 142592 / 3040	1890	-1278	
4	09.09.2011	11.05.2012	10.09.2012	667986 / 143089 / 2994	1750	-2403	
5	09.09.2011	11.05.2012	10.09.2012	668101 / 142938 / 2995	1700	-1647	
6	09.09.2011	11.05.2012	10.09.2012	668334 / 143278 / 2947	1680	-2565	
7	09.09.2011	11.05.2012	10.09.2012	668320 / 143129 / 2960	1700	-1998	
8	09.09.2011	11.05.2012	10.09.2012	668814 / 143406 / 2891	1660	-2493	
9	09.09.2011	11.05.2012	10.09.2012	668950 / 143305 / 2882	1890	-1755	
10	09.09.2011	11.05.2012	10.09.2012	669374 / 143558 / 2776	1790	-1593	
11	09.09.2011	11.05.2012	10.09.2012	669352 / 143870 / 2688	1520	-3042	
12	09.09.2011	11.05.2012	10.09.2012	669252 / 144166 / 2622	1290	-3537	
13	09.09.2011	11.05.2012	10.09.2012	669380 / 144158 / 2617	1540	-2979	
14	09.09.2011	11.05.2012	10.09.2012	669623 / 144522 / 2575	1220	-3312	
15	09.09.2011	11.05.2012	10.09.2012	669620 / 144355 / 2574	1430	-4014	
16	09.09.2011	11.05.2012	10.09.2012	670032 / 144807 / 2545	1040	-4257	
18	09.09.2011	11.05.2012	10.09.2012	670349 / 145008 / 2513	1400	-4410	
19	09.09.2011	11.05.2012	10.09.2012	670486 / 144828 / 2495	1360	-4356	
1	10.09.2012	24.04.2013	29.09.2013	667469 / 142819 / 3039	1480	288	
2	10.09.2012	24.04.2013	29.09.2013	667536 / 142656 / 3035	1480	528	
3	10.09.2012	24.04.2013	29.09.2013	667600 / 142557 / 3038	1500	618	
4	10.09.2012	24.04.2013	29.09.2013	667911 / 143040 / 2998	1400	-18	
5	10.09.2012	24.04.2013	29.09.2013	668070 / 142915 / 2995	1320	-9	
6	10.09.2012	24.04.2013	29.09.2013	668345 / 143283 / 2943	1260	-630	
7	10.09.2012	24.04.2013	29.09.2013	668406 / 143110 / 2946	1520	-54	
8	10.09.2012	24.04.2013	29.09.2013	668792 / 143397 / 2893	1300	-1044	
9	10.09.2012	24.04.2013	29.09.2013	668958 / 143294 / 2879	1400	-495	
10	10.09.2012	24.04.2013	29.09.2013	668386 / 143559 / 2775	1400	1935	
11	10.09.2012	24.04.2013	29.09.2013	669348 / 143882 / 2559	1080	-1971	
12	10.09.2012	24.04.2013	29.09.2013	669245 / 144168 / 2500	1280	-2034	
13	10.09.2012	24.04.2013	29.09.2013	669376 / 144157 / 2495	1540	-2043	
14	10.09.2012	24.04.2013	29.09.2013	669602 / 144518 / 2466	1020	-2754	
15	10.09.2012	24.04.2013	29.09.2013	669605 / 144342 / 2454	960	-3114	
16	10.09.2012	24.04.2013	29.09.2013	670013 / 144801 / 2422	1000	-2619	
17	10.09.2012	24.04.2013	29.09.2013	670077 / 144693 / 2429	980	-2979	
18	10.09.2012	24.04.2013	29.09.2013	670299 / 144985 / 2385	1160	-3753	
19	10.09.2012	24.04.2013	29.09.2013	670339 / 144801 / 2396	1160	-3492	

Table 4.8: Griesgletscher - Individual stake measurements of winter and annual balance.

Figure 4.11: Specific (left) and volumetric (right) winter (dotted, ◊), summer (dashed, △) and annual (continuous line, +) balance versus altitude for 2011/12 (top) and 2012/13 (bottom). Small symbols mark the individual measurements.

Figure 4.12: Equilibrium line altitude (ELA) and accumulation area ratio (AAR) versus mean specific balance including all previous observations.

4.7 Pizolgletscher

Introduction

Pizolgletscher is a steep cirque glacier in the north-eastern Swiss Alps. With a surface area of about 0.1 km² Pizolgletscher represents the size class of glacierets that include almost 80% of the total number of glaciers in Switzerland (Fischer et al., 2014). Pizolgletscher is north-exposed and located at a relatively low elevation (2630-2780 m a.s.l.) which indicates that it depends on high quantities of winter accumulation. Seasonal mass balance measurements were started in 2006 (Huss, 2010). The observation network was extended from initially two to six stakes. Photogrammetrical surveys exist for 1968, 1973, 1979, 1985, 1990, 1997, 2006 providing area and ice volume changes over the last four decades (Huss, 2010).

Figure 4.13: Surface topography and observational network of the Pizolgletscher.

Investigations in 2011/12

Winter balance was determined on 30th March 2012. Snow probings at 37 locations were performed and snow density was measured in a snow pit. Snow depth and snow density were above average.

Altitude	2011/1 Area	2 b _w	b _a	2012/1 Area	.3 b _w	b _a
(m a.s.l.)	(km^2)	(mm w.e.)	(mm w.e.)	(km^2)	(mm w.e.)	(mm w.e.)
2600 - 2650	0.020	1794	-1938	0.013	1261	-1202
2650 - 2700	0.034	1911	-1356	0.032	1469	-810
2700 - 2750	0.021	2303	-604	0.018	1749	79
2750 - 2800	0.005	2149	-971	0.005	1616	-66
2600 - 2800	0.081	2001	-1275	0.069	1515	-592

Table 4.9: Pizolgletscher - Specific winter and annual balance versus altitude in the two periods 2011/12 and 2012/13 evaluated for the exact measurement period defined by the dates of field survey.

During the late summer field survey on 21th September 2012 a negative mass balance for the measurement period since 24th September 2011 was observed at seven stakes. For the first time since the beginning of the measurements in 2006 a few patches of winter snow survived the summer. Melting at most stakes was, however, stronger than usual resulting in a high spatial variability of the mass balance. This can be attributed to particularly important wind redistribution processes of winter snow in this year. In July 2012, a large rockfall event occurred below the summit of Pizol. Debris was deposited in a band of about 20 meters width covering the entire length of

Stake		Period		Coordinates	Mass ba	alance
	Start	Spring	End		b _w	ba
				(m / m / m a.s.l.)	(mm \	w.e.)
P1	24.09.2011	30.03.2012	21.09.2012	748514 / 202906 / 2635	1380	-2480
P2	24.09.2011	30.03.2012	21.09.2012	748432 / 202789 / 2696	2930	-310
P3	24.09.2011	30.03.2012	21.09.2012	748342 / 202640 / 2781	2610	-630
P4	24.09.2011	30.03.2012	21.09.2012	748428 / 202906 / 2662	1920	-2560
P5	24.09.2011	30.03.2012	21.09.2012	748390 / 202880 / 2679	1920	-750
P7	24.09.2011	30.03.2012	21.09.2012	748390 / 202697 / 2740	1720	-1540
P8	24.09.2011	30.03.2012	21.09.2012	748524 / 202792 / 2677	1400	-1700
sp	24.09.2011	30.03.2012	21.09.2012	748390 / 202820 / 2694	3100	330
P1	21.09.2012	29.03.2013	23.09.2013	748521 / 202898 / 2629	1240	-1040
P2	21.09.2012	29.03.2013	23.09.2013	748432 / 202789 / 2692	1660	230
P3	21.09.2012	29.03.2013	23.09.2013	748342 / 202644 / 2777	210	-220
P4	21.09.2012	29.03.2013	23.09.2013	748430 / 202909 / 2654	1200	-1930
P5	21.09.2012	29.03.2013	23.09.2013	748395 / 202882 / 2675	1320	-1080
P7	21.09.2012	29.03.2013	23.09.2013	748391 / 202665 / 2752	1870	-860
P8	21.09.2012	29.03.2013	23.09.2013	748524 / 202792 / 2672	1260	-1040
P9	21.09.2012	29.03.2013	23.09.2013	748481 / 202701 / 2713	1660	-50
sp	21.09.2012	29.03.2013	23.09.2013	748383 / 202805 / 2695	2310	650

Table 4.10: Pizolgletscher - Individual stake measurements of winter and annual balance.

Pizolgletscher, locally affecting mass balance.

Investigations in 2012/13

During the winter field survey on 29th March 2013, probings of the snow depth at 119 locations were realized and snow density was determined in a snow pit. Snow depth was close to the long-term average (between 3-5 m). Although summer melting was less intense compared to previous years, the snow cover was already strongly depleted by the end of August. During the late summer field survey on 23th September 2013 mass balance was determined at nine stakes. At a few locations a slightly positive mass balance was measured and ablation was substantially smaller than between 2006 and 2012. A surface elevation model was generated using a terrestrial laserscanner in order to permit determination of the geodetic mass balance.

Figure 4.14: Specific (left) and volumetric (right) winter (dotted, ◊), summer (dashed, △) and annual (continuous line, +) balance versus altitude for 2011/12 (top) and 2012/13 (bottom). Small symbols mark the individual measurements.

4.8 Glacier de la Plaine Morte

Introduction

Glacier de la Plaine Morte (7.9 km²) is the largest plateau glacier in the European Alps and thus represents a particularly interesting site for studying accelerating effects of climate change on Alpine glaciers. Plaine Morte is situated at the main Alpine divide between the cantons Berne and Valais. 90% of the glacier surface lie in a narrow altitudinal band of between 2650 and 2800 m a.s.l. From the 5 km wide plateau with an average slope of less than four degrees, a small outlet glacier (Rezligletscher) flows northwards. In most years, the entire glacier is either snow-covered or completely snow-free at the end of summer, i.e. the equilibrium line either lies above or below the glacier. Large circular depressions of the glacier surface, probably related to cryo-karst, are common features and are stable over several decades. Three ice marginal lakes, notably Lac des Faverges with a water volume of more than 1 million m³, are subject to annual drainage events. The seasonal mass balance of Glacier de la Plaine Morte is determined since 2009 using the direct glaciological method (Huss et al., 2013). The spatial variability in melt is mainly driven by differences in ice surface albedo (Naegeli et al., 2015).

Figure 4.15: Surface topography and observational network of the Glacier de la Plaine Morte.

Investigations in 2011/12

Measurements of the winter mass balance were conducted on 26th April 2012. Snow probings at 39 locations distributed over the western part of the glacier were realized and snow density was determined in a snow pit. The average snow depth on the glacier was about three meters. Two dye tracer experiments on 6th August 2012 and 2nd September 2012 were performed to investigate the characteristics of subglacial drainage (Finger et al., 2013). By the beginning of August Glacier de

la Plaine Morte was completely snow-free. A negative mass balance was measured at four stakes on 2^{nd} September 2012. Ablation was considerable but less extreme than in summer 2011.

Table 4.11: Glacier de la Plaine Morte - Specific winter and annual balance versus altitude in the two periods 2011/12 and 2012/13 evaluated for the exact measurement period defined by the dates of field survey.

Altitude	2011/1	2		2012/1	.3	
	Area	b _w	b _a	Area	b _w	b _a
(m a.s.l.)	(km^2)	(mm w.e.)	(mm w.e.)	(km^2)	(mm w.e.)	(mm w.e.)
2400 - 2500	0.009	1574	-756	0.009	1808	-1087
2500 - 2600	0.152	1445	-1069	0.152	1672	-1553
2600 - 2700	1.831	1412	-969	1.831	1647	-1465
2700 - 2800	5.634	1383	-917	5.634	1623	-1266
2800 - 2900	0.223	1395	-232	0.223	1653	-378
2900 - 3000	0.029	1171	83	0.029	1393	146
2400 - 3000	7.878	1390	-909	7.878	1630	-1287

Investigations in 2012/13

The winter season was characterized by above-average snow accumulation on Glacier de la Plaine Morte. The winter field survey on 16th April 2013 provided probings of the snow depth at 59 locations distributed over the entire glacier and snow density was measured in a snow pit. Snow depth exhibited small spatial variations, was between three to four meters and the snow pack was characterized by a high density. On 16th August 2013 22 additional stakes in two 50x50m clusters in the western part of the glacier were installed to study small-scale differences in ice melting. On 31th August 2013 an overflight with an imaging spectrometer allowed a detailed mapping of surface impurities on Glacier de la Plaine Morte and evaluating spatially distributed ice albedo (Naegeli et al., 2015). On 2nd October 2013 a negative mass balance was measured at all four stakes and the glacier was completely snow-free.

Stake		Period		Coordinates	Mass b	alance
	Start	Spring	End		b _w	b _a
				(m / m / m a.s.l.)	(mm)	w.e.)
1	02.10.2011	26.04.2012	02.09.2012	603824 / 136301 / 2709	1430	-1510
3	02.10.2011	26.04.2012	02.09.2012	605525 / 136559 / 2725	1240	-800
5	02.10.2011	26.04.2012	02.09.2012	605005 / 137207 / 2674	1440	-450
6	02.10.2011	26.04.2012	02.09.2012	604415 / 136639 / 2695	1260	-1230
1	02.09.2012	16.04.2013	02.10.2013	603824 / 136301 / 2709	1550	-1720
3	02.09.2012	16.04.2013	02.10.2013	605525 / 136559 / 2725	1700	-1010
5	02.09.2012	16.04.2013	02.10.2013	605005 / 137207 / 2674	1630	-1370
6	02.09.2012	16.04.2013	02.10.2013	604415 / 136639 / 2695	1610	-1510

Table 4.12: Glacier de la Plaine Morte - Individual stake measurements of winter and annual balance.

Figure 4.16: Specific (left) and volumetric (right) winter (dotted, ◊), summer (dashed, △) and annual (continuous line, +) balance versus altitude for 2011/12 (top) and 2012/13 (bottom). Small symbols mark the individual measurements.

4.9 Rhonegletscher

Introduction

Rhonegletscher is a temperate valley glacier located in the central Swiss Alps, and is the primary source of water for the Rhone river. The glacier is easily accessible and therefore has been observed since the 19th century. The total surface area of the glacier is 15.8 km² flowing in a southern direction from 3600 m a.s.l. down to 2200 m a.s.l. The first mass balance measurements were carried out in 1874 and are first ever recorded worldwide. After two periods of measurements between 1884-1910, and 1980-1982, the measurement series was resumed in 2006. Determination of volumetric changes in decadal resolution reach further back to 1874 (Bauder et al., 2007).

Figure 4.17: Surface topography and observational network of the Rhonegletscher.

Topographic maps or photogrammetrical surveys exist for 1874, 1929, 1959, 1980, 1991, 2000, and 2007.

Altitude	2011/12	2		2012/1	3	
	Area	b _w	b _a	Area	b _w	b _a
(m a.s.l.)	(km^2)	(mm w.e.)	(mm w.e.)	(km ²)	(mm w.e.)	(mm w.e.)
2200 - 2300	0.268	690	-6204	0.268	501	-5426
2300 - 2400	0.484	798	-5775	0.484	636	-4369
2400 - 2500	0.639	903	-4930	0.639	785	-3848
2500 - 2600	1.139	994	-4308	1.139	933	-3289
2600 - 2700	0.936	1155	-3647	0.936	1161	-2443
2700 - 2800	1.069	1372	-1831	1.069	1482	-1013
2800 - 2900	2.154	1583	-812	2.154	1786	55
2900 - 3000	2.171	1731	-520	2.171	1998	531
3000 - 3100	1.877	1699	115	1.877	1984	795
3100 - 3200	1.534	1736	767	1.534	2040	1117
3200 - 3300	1.456	1842	883	1.456	2175	1575
3300 - 3400	0.951	1882	1015	0.951	2231	1916
3400 - 3500	0.795	1741	1121	0.795	2068	1915
3500 - 3600	0.334	1394	842	0.334	1651	1442
2200 - 3600	15.808	1529	-1008	15.808	1721	-160

Table 4.13: Rhonegletscher - Specific winter and annual balance versus altitude in the two periods 2011/12 and 2012/13 evaluated for the exact measurement period defined by the dates of field survey.

Investigations in 2011/12

The measurement period extended from 15th September 2011 to 11th September 2012 with a field visit in spring on 4th May 2012. There was a total of 422 individual snow depth soundings collected. At the time of the field measurements in September 2012, the glacier was covered with snow above the icefall and melt-out proceeded during summer up to about 2850 m a.s.l. with many of the exposed areas higher up completely melted out.

Investigations in 2012/13

The measurement period began on the 11th September 2012 and ended on the 23rd September 2013 with a field visit in the spring on 25th April 2013. During the spring field visit, snow depth from 312 individual points were collected to measure the winter accumulation. No detailed measurements of a density profile were performed. In September 2013, the limit of complete melt of winter accumulation was found at an elevation of about 2800 m a.s.l.

Table 4.14: Rhonegletscher - Individual stake measurements of winter and annual balance.

Stake		Period		Coordinates	Mass ba	alance
	Start	Spring	End		b _w	b _a
				(m / m / m a.s.l.)	(mm v	w.e.)
01	15.09.2011	03.05.2012	07.09.2012	673815 / 166615 / 3234	1960	960
02	15.09.2011	03.05.2012	07.09.2012	673565 / 165928 / 3123	1876	1380
03	15.09.2011	03.05.2012	07.09.2012	673098 / 164930 / 2932	2000	756
04	13.09.2011	03.05.2012	06.09.2012	673344 / 162738 / 2750	1700	-1413
05	13.09.2011	03.05.2012	07.09.2012	672517 / 161929 / 2612	100	-4509
06	13.09.2011	03.05.2012	07.09.2012	672418 / 160839 / 2475	120	-4941
07	13.09.2011	04.05.2012	10.09.2012	672654 / 160178 / 2373	-430	-6210
08	13.09.2011	04.05.2012	11.09.2012	672686 / 159727 / 2313	-500	-6588
09	13.09.2011	04.05.2012	11.09.2012	672608 / 159502 / 2269	-250	-6174
10	13.09.2011	04.05.2012	11.09.2012	672531 / 159389 / 2251	-590	-6615
11	13.09.2011		11.09.2012	672538 / 159239 / 2229		-5760
13	13.09.2011	04.05.2012	11.09.2012	672701 / 159943 / 2336	-240	-5661
01	07.09.2012	25.04.2013	26.09.2013	673814 / 166615 / 3234	2270	1620
02	07.09.2012	25.04.2013	26.09.2013	673565 / 165926 / 3123	1928	1320
03	07.09.2012	25.04.2013	26.09.2013	673104 / 164929 / 2930	1938	1458
04	07.09.2012	25.04.2013	26.09.2013	673357 / 162759 / 2749	1453	-981
05	07.09.2012	25.04.2013	22.09.2013	672516 / 161927 / 2608	741	-3312
06	07.09.2012	25.04.2013	22.09.2013	672407 / 160842 / 2472	798	-4104
07	11.09.2012		23.09.2013	672653 / 160178 / 2368		-4599
08	11.09.2012	25.04.2013	23.09.2013	672688 / 159722 / 2306	1183	-5031
09	11.09.2012	25.04.2013	23.09.2013	672607 / 159502 / 2263	893	-7299
10	11.09.2012	25.04.2013	23.09.2013	672537 / 159393 / 2245	693	-5949
11	11.09.2012		23.09.2013	672535 / 159241 / 2220		-4968
12	07.09.2012		27.09.2013	673500 / 163990 / 2847		420
13	11.09.2012	25.04.2013	23.09.2013	672707 / 159924 / 2329	950	-3528

Figure 4.18: Specific (left) and volumetric (right) winter (dotted, \diamond), summer (dashed, \triangle) and annual (continuous line, +) balance versus altitude for 2011/12 (top) and 2012/13 (bottom). Small symbols mark the individual measurements.

4.10 Sankt Annafirn

Introduction

Sankt Annafirn is a very small cirque glacier located in the Gotthard massif, central Swiss Alps. In 2010, it covered an area of 0.2 km², flowing in north direction from 2928 m a.s.l. down to 2623 m a.s.l. Since the Little Ice Age maximum around 1850, when the glacier still covered 1.113 km², Sankt Annafirn showed considerable shrinkage (1973: 0.439 km²; 2003: 0.294 km²) (Fischer et al., 2014). Mass balance measurements started in spring 2012 in connection with a project on the response of very small glaciers in the Swiss Alps to climate change funded by the Swiss National Science Foundation. From the comparison of the DHM25 Level 1 DEMs acquired from 1961 to 1991 over glacierized areas with the swissALTI3D DEMs from 2008-2011, Fischer et al. (2015) derived a volume loss of 7.377 mio. m³ and an average geodetic mass balance of -0.798 m w.e. a^{-1} for St. Annafirn from 1986 to 2010.

Figure 4.19: Surface topography and observational network of the Sankt Annafirn.

Altitude	2011/1 Area	2 b _w	b _a	$\begin{array}{ccc} 2012/13 \\ Area & \overline{b_w} & \overline{b_a} \end{array}$
(m a.s.l.)	(km²)	(mm w.e.)	(mm w.e.)	(km²) (mm w.e.) (mm w.e.)
2600 - 2650	0.018	1026	-2211	0.018 1020 -1194
2650 - 2700	0.041	1200	-1360	0.041 1061 -1029
2700 - 2750	0.048	1322	-557	0.048 1282 -438
2750 - 2800	0.045	1463	-326	0.045 1671 152
2800 - 2850	0.047	1483	-280	0.047 1666 301
2850 - 2900	0.017	1411	29	0.017 1434 24
2900 - 2950	0.001	878	58	0.001 866 -619
2600 - 2950	0.218	1345	-683	0.218 1394 -290

Table 4.15: Sankt Annafirn - Specific winter and annual balance versus altitude in the two periods 2011/12 and 2012/13 evaluated for the exact measurement period defined by the dates of field survey.

Investigations in 2011/12

The measuring period extended from 1st October 2011 to 3rd October 2012 with a field visit in spring on 12th April 2012. Snow depth was sampled at 31 locations and the density was determined with a snow pit. Snowfalls in early October 2011 protected the glacier and marked the end of the ablation season. After a rather warm and dry November, heavy snowfalls during December and January led to an above-average high-winter snow pack. Because February and March were rather

Table 4.16: Sankt Annafirn - Individual stake measurements of winter and annual balance.

Stake	Period		Coordinates	Mass b	Mass balance	
	Start	Spring	End		b _w	ba
				(m / m / m a.s.l.)	(mm ·	w.e.)
1	01.10.2011	12.04.2012	03.10.2012	689089 / 161269 / 2791	1200	-770
2	01.10.2011	12.04.2012	03.10.2012	689118 / 161432 / 2735	1520	-300
3	01.10.2011	12.04.2012	03.10.2012	689100 / 161553 / 2704	1260	-1090
4	01.10.2011	12.04.2012	03.10.2012	689118 / 161649 / 2672	1200	-1350
1	03.10.2012	13.03.2013	02.10.2013	689092 / 161274 / 2791	1310	20
2	03.10.2012	13.03.2013	02.10.2013	689118 / 161432 / 2735	1270	-40
3	03.10.2012	13.03.2013	02.10.2013	689100 / 161559 / 2701	1130	-670
4	03.10.2012	13.03.2013	02.10.2013	689115 / 161658 / 2667	940	-1360
6	03.10.2012	13.03.2013	02.10.2013	689222 / 161542 / 2709	1070	-740
7	03.10.2012	13.03.2013	02.10.2013	689007 / 161598 / 2681	1150	-960
8	03.10.2012	13.03.2013	02.10.2013	689038 / 161363 / 2758	1310	290
9	03.10.2012	13.03.2013	02.10.2013	689077 / 161236 / 2803	1290	500
10	03.10.2012	13.03.2013	02.10.2013	689197 / 161247 / 2805	1460	500
11	03.10.2012	13.03.2013	02.10.2013	689178 / 161323 / 2772	1230	0

dry, average snow accumulation was measured on Sankt Annafirn during the April field survey. Warm spring and particularly warm summer months rapidly melted away the accumulated snow so that the majority of the surface of Sankt Annafirn was bare and exposed to ice melt already at the beginning of August.

Investigations in 2012/13

The measuring period was from 3rd October 2012 to 2nd October 2012 with a field visit in spring on 13th March 2013. Snow depth probings at 41 locations were collected and the density was determined with a snow pit. After regular snowfalls from early October 2012 to the end of January 2013, very dry conditions from the beginning of February to mid-April did not add remarkable further snow accumulation on Sankt Annafirn. A comparatively very humid spring together with the maximum snow accumulation only in mid-June delayed the onset of snowmelt. Therefore, despite the warm summer months, mass loss of Sankt Annafirn was only moderate.

Sankt Annafirn in September 2013 (Photo: M. Fischer)

Figure 4.20: Specific (left) and volumetric (right) winter (dotted, \diamond), summer (dashed, \triangle) and annual (continuous line, +) balance versus altitude for 2011/12 (top) and 2012/13 (bottom). Small symbols mark the individual measurements.

4.11 Silvrettagletscher

Introduction

Silvrettagletscher is a small temperate mountain glacier located in the north-eastern part of Switzerland in the Silvretta massif at the border to Austria. The present surface area is 2.7 km², stretching from 3090 m a.s.l. down to 2470 m a.s.l. First mass balance measurements date back to 1910s (Firnberichte, 1914–1978). Seasonal observations of two stakes were conducted until 1959, when the stake network was extended to about 40 stakes. Huss and Bauder (2009) compiled and homogenized all existing measurements of stake 5 to a continuous time series 1914-2007 of seasonal resolution (see Section 4.10 in volume 127/128). Determination of volumetric changes in decadal resolution reach further back to 1892 (Bauder et al., 2007). Topographic maps and photogrammetrical surveys exist for 1892, 1938, 1959, 1973, 1986, 1994, 2003, 2007 and 2012. Huss et al. (2009) reanalyzed and homogenized the seasonal stake data and ice volume changes for the period 1959-2007. Results of the mean specific winter and annual balance with associated area, ELA and AAR values for comparable fixed time periods have been reported in Section 4.9 of volume 125/126.

Figure 4.21: Surface topography and observational network of the Silvrettagletscher.

Investigations in 2011/12

The measurement period extended from 11th September 2011 to 23rd September 2012. The winter mass balance was determined during a field visit in spring on 26th May 2012. Snow depth was

The Swiss Glaciers 2011/12 and 2012/13

sampled at 218 locations and supplemented by a density profile from a snow pit. At the time of the measurements in autumn 2012, the glacier was completely covered with some fresh snow. At the end of summer only a few marginal patches of snow accumulated during winter on steep shaded slopes were left. No density measurements were possible. Measurements from 15 stakes were available for determining the annual mass balance.

Figure 4.22: Silvrettagletscher - Mean specific annual balance (bars) and cumulative mass balance (line) for the period 1959-2013.

Investigations in 2012/13

The measuring period was from 23rd September 2012 to 22nd September 2013. During a spring field visit on 6th May 2013, snow depth probings from about 143 individual points were collected. During the melting season, the melt out of winter accumulation did not proceed above 2800 m a.s.l. Density profiles were acquired in spring and fall in a snow pit at stake 02. Measurements from 17 stakes and a density profile were available for determining the annual mass balance.

Altitude	2011/1	2		2012/2	13	
	Area	b _w	b _a	Area	b _w	b _a
(m a.s.l.)	(km²)	(mm w.e.)	(mm w.e.)	(km^2)	(mm w.e.)	(mm w.e.)
2400 - 2500	0.023	1232	-2829	0.023	898	-2448
2500 - 2600	0.362	1392	-2636	0.362	915	-1860
2600 - 2700	0.404	1528	-1760	0.404	1120	-870
2700 - 2800	0.676	1642	-1295	0.676	1281	-292
2800 - 2900	0.576	1618	-1097	0.576	1403	452
2900 - 3000	0.583	1605	-869	0.583	1458	500
3000 - 3100	0.117	1242	-1133	0.117	1333	451
2400 - 3100	2.741	1559	-1415	2.741	1271	-246

Table 4.17: Silvrettagletscher - Specific winter and annual balance versus altitude in the two periods 2011/12 and 2012/13 evaluated for the exact measurement period defined by the dates of field survey.

Silvrettagletscher covered with fresh snow at the time of the field survey in September 2013 (Photo: A. Bauder)

Table 4.18:	Silvrettagletscher -	Individual	stake	measuremer	nts of	winter	and	annual	bal-
	ance.								

Stake	Period		Coordinates	Mass ba	alance	
	Start	Spring	End		bw	ba
				(m / m / m a.s.l.)	(mm \	w.e.)
01	11.09.2011	26.05.2012	23.09.2012	801843 / 191729 / 2980	1690	-612
02	11.09.2011	26.05.2012	23.09.2012	801927 / 192023 / 2955	1720	-384
03	11.09.2011	27.05.2012	23.09.2012	801785 / 192290 / 2892	1865	510
04	11.09.2011	26.05.2012	21.09.2012	801746 / 192634 / 2818	1490	-126
05	11.09.2011	26.05.2012	21.09.2012	801085 / 192687 / 2718	1545	-1800
06	11.09.2011	26.05.2012	21.09.2012	800525 / 192890 / 2619	1400	-2367
07	11.09.2011	27.05.2012	21.09.2012	800179 / 192874 / 2570	1470	-2790
08	11.09.2011	26.05.2012	21.09.2012	799834 / 192733 / 2526	1395	-2619
09	11.09.2011	26.05.2012	23.09.2012	799670 / 192735 / 2492	1065	-3114
10	11.09.2011	26.05.2012	23.09.2012	801521 / 191811 / 2934	1745	-720
11	11.09.2011	26.05.2012	21.09.2012	800736 / 192196 / 2723	1535	-1449
12	11.09.2011	26.05.2012	23.09.2012	800408 / 192585 / 2594	1475	-2331
13	11.09.2011	26.05.2012	21.09.2012	799965 / 192612 / 2540	1200	-3141
15	11.09.2011	26.05.2012	23.09.2012	801169 / 191987 / 2855	1580	-1638
17	11.09.2011	26.05.2012	21.09.2012	801461 / 192823 / 2774	1645	-1278
18	11.09.2011	26.05.2012	21.09.2012	800759 / 192543 / 2687	1685	-1494
01	23.09.2012	05.05.2013	22.09.2013	801840 / 191730 / 2978	1411	485
02	23.09.2012	05.05.2013	22.09.2013	801927 / 192021 / 2954	1447	608
03	23.09.2012	06.05.2013	22.09.2013	801782 / 192294 / 2889	1586	1202
04	21.09.2012	06.05.2013	21.09.2013	801742 / 192636 / 2817	1382	371
05	21.09.2012	06.05.2013	21.09.2013	801074 / 192689 / 2715	1177	-434
06	21.09.2012	06.05.2013	21.09.2013	800515 / 192890 / 2616	1049	-1462
07	21.09.2012	06.05.2013	21.09.2013	800165 / 192871 / 2565	1076	-1403
08	21.09.2012	05.05.2013	21.09.2013	799827 / 192744 / 2521	1114	-1530
09	23.09.2012		21.09.2013	799676 / 192738 / 2490		-2482
10	23.09.2012	05.05.2013	22.09.2013	801527 / 191807 / 2934	1296	356
11	21.09.2012	05.05.2013	21.09.2013	800735 / 192197 / 2721	1053	-502
12	23.09.2012	05.05.2013	21.09.2013	800404 / 192586 / 2591	1064	-1267
13	21.09.2012	05.05.2013	21.09.2013	799949 / 192607 / 2534	783	-2635
15	23.09.2012	05.05.2013	21.09.2013	801165 / 191989 / 2853	1109	100
16	21.09.2012	06.05.2013	21.09.2013	801340 / 192371 / 2764	1123	-587
17	21.09.2012	05.05.2013	21.09.2013	801457 / 192824 / 2773	1181	-332
18	21.09.2012	05.05.2013	21.09.2013	800767 / 192541 / 2687	1224	-527

Figure 4.23: Specific (left) and volumetric (right) winter (dotted, \diamond), summer (dashed, \triangle) and annual (continuous line, +) balance versus altitude for 2011/12 (top) and 2012/13 (bottom). Small symbols mark the individual measurements.

Figure 4.24: Equilibrium line altitude (ELA) and accumulation area ratio (AAR) versus mean specific balance including all previous observations.

4.12 Glacier de Tsanfleuron

Introduction

Glacier de Tsanfleuron is a well-accessible medium-sized glacier at the border between the cantons of Valais and Vaud. The glacier has an area of about 2.7 km² and exhibits relatively small surface slopes. Glaciological investigations were started in 2009 with the aim of establishing a mass balance monitoring program in the Western Swiss Alps. In addition, measurements are also performed on the very small Glacier du Sex Rouge connected to Tsanfleuron in the accumulation area. This permits comparing the mass balance response of neighbouring glaciers of different size and characteristics.

Figure 4.25: Surface topography and observational network of the Glacier de Tsanfleuron and the Glacier du Sex Rouge.

Investigations in 2011/12

The winter mass balance observations on Glacier de Tsanfleuron and Glacier du Sex Rouge were conducted on 3rd April 2012. Snow density was determined in a snow pit. Snow depth was measured using a 1.6 GHz ground-penetrating radar device and snow probings. Due to adverse weather conditions only part of the glacier could be covered. In addition, the ice thickness distribution of Glacier du Sex Rouge was measured using radar. On 25th September 2012 a negative mass balance

Altitude	2011/1 Area	2 b _w	b _a	2012/2 Area	L3 b _w	b _a
(m a.s.l.)	(km^2)	(mm w.e.)	(mm w.e.)	(km^2)	(mm w.e.)	(mm w.e.)
2500 - 2600	0.098	1168	-2624	0.073	1413	-1587
2600 - 2700	0.497	1297	-2175	0.510	1475	-1183
2700 - 2800	1.143	1399	-1761	1.143	1568	-243
2800 - 2900	0.964	1339	-1552	0.863	1588	133
2900 - 3000	0.050	1192	-1237	0.058	1552	475
2500 - 3000	2.752	1348	-1784	2.646	1552	-323

Table 4.19: Glacier de Tsanfleuron - Specific winter and annual balance versus altitude in the two periods 2011/12 and 2012/13 evaluated for the exact measurement period defined by the dates of field survey.

for the measurement period was found at all five measurement sites on Glacier de Tsanfleuron, and for one on Glacier du Sex Rouge. At the end of the ablation season both glaciers were completely snow-free and mass loss was considerable. A network of six ablation stakes was installed on Glacier du Sex Rouge related to a project focusing on the mass balance of very small glaciers (Fischer et al., 2013).

Investigations in 2012/13

During the winter field survey on 23rd April 2013 probings of the snow depth at 118 locations on Glacier du Tsanfleuron, and at 138 locations on Glacier du Sex Rouge were realized and snow density was determined in a snow pit. With roughly four meters, snow depth was above the long-term average. On 13th September 2013, a negative mass balance was measured at four stakes on Glacier du Tsanfleuron, with values being considerably less negative than in previous years. About 30% of the glacier surface were still covered by winter snow by mid-September 2013. Firn density was measured in a snow pit. On Glacier du Sex Rouge mass balance could be measured at three

	the two periods 2011 period defined by th	L/12 and 2012/13 evaluated for the exact measurement e dates of field survey.
Altitude	2011/12	2012/13

Table 4.20: Glacier du Sex Rouge - Specific winter and annual balance versus altitude in

011/12		20)12/13		
Area t	b _w b	A A	rea	b _w b	a
km²) (mm	w.e.) (mm	w.e.) (k	.m²) (mn	n w.e.) (mm	w.e.)
.006 11	.09 -17	766 0.	006 1	436 -7	725
.086 12	282 -14	432 0.	086 1	383 –8	359
.165 14	-12	272 0.	165 1	.584 —6	574
.011 15	556 —2	168 0.	011 2	000	88
.302 13	358 -12	285 0.	302 1	530 -7	706
	D11/12 xrea E xm ²) (mm .006 11 .086 12 .165 14 .011 15 .302 13	D11/12 wrea bw b sm ²) (mm w.e.) (mm 006 1109 -17 086 1282 -14 165 1401 -12 011 1556 -12 302 1358 -12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

stakes indicating relatively small ablation. A 35 m deep borehole was drilled on Glacier du Sex Rouge using a hot water jet and a thermistor chain was installed to monitor englacial temperature (Signer, 2014). In addition, a surface elevation model was generated using a terrestrial laserscanner to permit determination of the geodetic mass balance of Glacier du Sex Rouge and the nearby Glacier du Prapio.

Stake	Period		Coordinates	Mass b	Mass balance	
	Start	Spring	End		bw	ba
				(m / m / m a.s.l.)	(mm v	w.e.)
2	26.09.2011	03.04.2012	25.09.2012	582924 / 129615 / 2854	1330	-1620
3	26.09.2011	03.04.2012	25.09.2012	583418 / 129319 / 2811	1460	-1370
4	26.09.2011	03.04.2012	25.09.2012	583964 / 130341 / 2727	1440	-1660
5	26.09.2011	03.04.2012	25.09.2012	584257 / 130045 / 2689	1260	-2210
6	26.09.2011	03.04.2012	25.09.2012	584741 / 130343 / 2603	1140	-2520
S2	26.09.2011	03.04.2012	25.09.2012	582702 / 130632 / 2804	1610	-1200
1	25.09.2012	23.04.2013	13.09.2013	583005 / 130351 / 2803	1670	300
2	25.09.2012	23.04.2013	13.09.2013	582913 / 129545 / 2851	1470	260
3	25.09.2012	23.04.2013	13.09.2013	583415 / 129322 / 2805	1570	-140
4	25.09.2012	23.04.2013	13.09.2013	583979 / 130337 / 2719	1580	-290
5	25.09.2012	23.04.2013	13.09.2013	584261 / 130049 / 2689	1390	-1230
6	25.09.2012	23.04.2013	13.09.2013	584742 / 130347 / 2603	1320	-1620
S2	25.09.2012	23.04.2013	14.09.2013	582702 / 130654 / 2805	1120	-930
S3	25.09.2012	23.04.2013	14.09.2013	582835 / 130816 / 2806	1730	-490
S4	25.09.2012	23.04.2013	14.09.2013	582801 / 130936 / 2777	1380	-1080
S5	25.09.2012	23.04.2013	14.09.2013	582585 / 130745 / 2785	1240	-740
S6	25.09.2012	23.04.2013	14.09.2013	582873 / 130703 / 2835	1940	-230

Table 4.21: Glacier de Tsanfleuron and Glacier du Sex Rouge - Individual stake measurements of winter and annual balance.

Figure 4.26: Glacier de Tsanfleuron - Specific (left) and volumetric (right) winter (dotted, ◊), summer (dashed, △) and annual (continuous line, +) balance versus altitude for 2011/12 (top) and 2012/13 (bottom). Small symbols mark the individual measurements.

4.13 Claridenfirn

Introduction

Measurements of the snow and firn accumulation and melt, as well as of precipitation values in the accumulation area of the Claridenfirn, have been undertaken by various researchers since 1914. The traditional glaciological method was applied by digging a snowpit down to the layer of ochre applied the previous autumn and measuring the water equivalents. Specific annual balances were determined every autumn since 1957 and also regularly in spring at two plateau locations at altitudes of 2700 and 2900 m a.s.l. The reports dealing with the years 1914 to 1978 are published in Kasser et al. (1986). The method of measurement and the results from the period 1914-1984 are published in Müller and Kappenberger (1991). A further update of the measurements until 2007 allowed Huss and Bauder (2009) to separate accumulation and melt and to interpret the entire time series in terms of climatic influences (see Section 4.10 in volume 127/128).

Figure 4.27: Surface topography and observational network of the Claridenfirn.

Investigations in 2011/12

The spring measurements were undertaken on 27th May 2012. Detailed observations in a snow pit at the upper stake were supplemented by 10-20 snow depth samples in the vicinity of both stakes. Percolation of meltwater was observed in the upper most meter down to some ice lenses. The temperatures in the lower column reached -4.0 °C. Autumn measurements were carried out on 10th September 2012. At the lower site, snow accumulation during winter had melted completely with a substantial loss of ice. The upper site was covered with with approx. 10 cm snow accumulated since the the maximum melt out reached at the end of August. As the maximum melt out in the previous fall was reached after the campaign an accumulated firn layer of about 75 cm was present. In addition to the snow pits and depth probings, two precipitation storage gauges were monitered and readings taken during spring and fall visits at Claridenhütte and Geissbützistock.

Investigations in 2012/13

The investigations included snow depth measurements at both stakes, snow pit measurements in spring and fall at the upper site, stake readings, and determination of the position using a small theodolite in fall. The spring field survey was carried out on 8^{th} June, and the late summer survey on 7^{th} September. In Spring, ice lenses formed by percolation of meltwater were found in the upper fourth and were less pronounced than in previous years. The 0° C isotherm was at 1 m depth while the temperature below still reached -1.7 °C. The accumulated snow from the winter season was completely melted at lower site while at the upper site a layer of about 2 m survived the summer season.

Stake		Period		Coordinates	Mass b	alance
	Start	Spring	End		b _w	b _a
				(m / m / m a.s.l.)	(mm v	w.e.)
upper	03.09.2011	27.05.2012	10.09.2012	710598 / 189141 / 2900	1958	6
lower	03.09.2011	27.05.2012	10.09.2012	712245 / 190388 / 2700	1777	-1173
upper lower	10.09.2012 10.09.2012	08.06.2013 08.06.2013	07.09.2013 07.09.2013	710598 / 189141 / 2900 712245 / 190388 / 2700	2713 2056	1174 —153

Table 4.22: Claridenfirn - Individual stake measurements of winter and annual balance.

Figure 4.28: Mass balance of the upper (top) and lower (bottom) stake on Claridenfirn over the whole observation period. The gray shaded area highlights the years of the current report.

4.14 Grosser Aletsch (Jungfraufirn)

Introduction

Grosser Aletschgletscher is the largest ice mass in the Alps and borders to the main northern Alpine crest. The three main tributaries merge at the Konkordiaplatz and form the common tongue which extends southwards for about 15 km. Starting in 1918, the first stake was installed at 3350 m a.s.l. on Jungfraufirn and snow accumulation and annual mass balance was measured almost continuously at P3 (Figure 4.29). Huss and Bauder (2009) compiled and homogenized all existing measurements to a continuous time series of seasonal resolution (see Section 4.10 in volume 127/128).

Figure 4.29: Surface topography and observational network of the Grosser Aletschgletscher.

Investigations in 2011/12

The investigations consisted of snow depth measurements and density profiling using a firn drill in spring and fall. The surface at the time of the measurement in the previous fall was marked and could be retrieved in the density profiles. This program was supplemented by stake readings approx. twice a month. The measurements were taken in spring on 30^{th} May and in fall on 13^{th} October. The layer of winter accumulation included 1-2 not very distinct ice lenses detectable by snow depth probing. The distinct surface crust formed in summer 2011 could be identified clearly at both measurement events in May and October. In addition to mass balance investigations, the position of the stake was surveyed using a high-precision differential GPS. An annual speed of 33.1 m a^{-1} was determined with only a slight increase between winter and summer season.

Investigations in 2012/13

The same set of measurements was conducted as in the previous period. The spring field survey was carried out on 15th May and the fall survey on 22nd October. Snow depth measurement and firn coring in May showed a homogeneous layer of winter accumulation with no distinct ice lenses. Corresponding measurements from stake readings, firn drilling, and snow depth measurements all delivered similar results. A surface crust and a distinct horizon at 1 m depth representing the summer melt surface were present in October. Mean density was found to be 525 \pm 10 kg m⁻³ in spring of the layer accumulated in winter and 567 \pm 10 kg m⁻³ in fall of the annual layer. Flow velocity with 34.1 m⁻¹ was consistent with the measurement in the previous period.

Stake	Start	Period Spring	End	Coordinates (m / m / m a.s.l.)	Mass ba b _w (mm w	lance b _a v.e.)
P3	17.10.2011	30.05.2012	13.10.2012	641825 / 154810 / 3342	1779	1495
P3	13.10.2012	14.05.2013	22.10.2013	641825 / 154810 / 3341	2252	2410

Table 4.23: Aletsch - Individual stake measurements of winter and annual balance.

5 Volume Change

5.1 Introduction

Ongoing long-term investigations of ice volume change are carried out on selected glaciers in the Swiss Alps (Figure 5.1). For several glaciers the ice volume change has been observed since the end of the 19th century (Bauder et al., 2007). Thickness and volume changes are determined from repeated comparison of the surface topography of different years. The application of the geodetic method allows calculating average mass balance over periods of a several years to decades from ice volume change. Geodetic surveys of glacier surface topography is powerful as large and inaccessible areas can be covered and changes of the entire glacier is collected (Bamber and Rivera, 2007; Cogley, 2009; Gardner et al., 2013). The objective of ice volume change observations is to complement the detailed mass balance studies (Chapter 4) for a periodic reanalysis and homogenization as well as to capture data for larger samples of glaciers. The ice volume change

Figure 5.1: Investigated glaciers for ice volume change.
has been adopted as part of the Swiss glacier monitoring program (see also chapter 1.1 of volume 125/126).

Digital elevation models (DEM) describing the glacier surface geometry have been derived by photogrammetrical analysis of aerial photographs and evaluation of contour lines on topographic maps. As part of glacier monitoring activities individual glaciers have repeatedly been surveyed in detail for production of high resolution maps (e.g. Mercanton, 1916; Kasser and Röthlisberger, 1966). The first complete survey of official maps at a 1:50'000 scale were produced in the first half of the 20th century. Aerial photographs have been taken in Switzerland by swisstopo at regular intervals in order to update national maps since the 1960s. In addition, high-resolution aerial photographs have been acquired for selected glaciers as part of various projects (Glaciological reports, 1881–2015).

Each state of a glacier is represented by a DEM of the surface topography and an outline that delimits the glacier extent. The volume change between two successive states is subsequently calculated over the entire area of the two states including ice masses that have completely melted or accumulated (Bauder et al., 2007). For the conversion of the volume changes to a mean specific mass balance rate a constant density of 850 kg m⁻³ (Huss, 2013), the average area of the two states and the length of the period is used.

Figure 5.2: Evolution of the change in mean thickness (rate in ma^{-1}) for individual glaciers. The area according to the last DEM available is indicated.

5.2 Long-term time-series

Time series of the change in ice volume exist for several glaciers resolved in periods initially of decades and 5-10 years more recently. The evolution of the change in mean thickness over the last 100 years is shown in Figure 5.2. The detailed values of volume change and the corresponding geodetic balance for the individual glaciers and each period are presented in Table 5.1.

5.3 Change in ice volume and geodetic mass balance

The change in ice volume is regularly evaluated for more than 20 glaciers in the Swiss Alps based on repeated DEMs. The glaciers within the focus of the Swiss glacier monitoring program have been listed in chapter 1.1 of volume 125/126. Although the selection was mainly based on data acquired over the years with a preference to cover the largest ice masses, as well as sites with ongoing long-term montoring efforts, glaciers of various size classes are included among them mainly the largest glaciers (e.g. Grosser Aletsch). They are well distributed of the entire Swiss Alps providing a representative overview. Detailed numbers for change in volume and the corresponding values of mean geodetic balance for the individual glaciers and each sub period are reported in the Table 5.1.

Sub-period	Area Start	Area End	Volume change	Geodetic balance
	(km²)	(km²)	$(10^{\circ} \text{ m}^{3})$	(m w.e. a ⁻¹)
Allalin				
1932 - 1956	11.072	9.939	-43.443	-0.15
1956 - 1967	9.939	9.955	17.803	0.14
1967 - 1982	9.955	10.459	49.124	0.27
1982 - 1991	10.459	9.799	-87.021	-0.81
1991 - 1999	9.799	9.774	-25.779	-0.28
1999 - 2004	9.774	9.680	-14.222	-0.25
2004 - 2008	9.680	9.462	-24.215	-0.54
2008 - 2012	9.462	9.699	-36.109	-0.79
Basòdino				
1929 - 1949	3.280	2.706	-43.969	-0.62
1949 - 1961	2.706	2.436	-8.476	-0.23
1961 - 1971	2.436	2.388	11.179	0.39
1971 - 1985	2.388	2.587	7.863	0.19
1985 - 1991	2.587	2.398	-15.530	-0.88
1991 - 2002	2.398	2.201	-12.023	-0.40
2002 - 2008	2.201	1.963	-21.103	-1.45
2008 - 2013	1.963	1.844	-4.915	-0.44

Table 5.1: Change in volume and the mean geodetic balance over individual sub-periods

Clariden				
1936 - 1956	6.164	5.809	-4.117	-0.03
1956 - 1979	5.809	6.012	22.843	0.14
1979 - 1985	6.012	6.085	0.438	0.01
1985 - 1990	6.085	5.640	-30.367	-0.87
1990 - 2003	5 640	5 127	-29 011	-0.36
2000 2000	01010	0.121	201011	0.00
Corbassière				
1034 - 1083	19 388	19 499	-86 011	-0.08
1083 - 1008	10 / 00	18 550	_127 710	-0.38
1008 2003	18 550	10.555	-127.719	-0.30
1990 - 2005	10.559	10.010	-24.954	-0.23
2003 - 2008	10.010	10.202	-95.029	-0.63
2008 - 2013	18.202	17.518	-78.330	-0.75
Ein delen				
	00 721	10.050	010 F16	0.10
1931 - 1982	20.731	16.959	-210.510	-0.18
1982 - 2007	18.959	16.952	-306.361	-0.58
C ://				
Gietro	F 075		0 401	0.00
1934 - 1971	5.975	5.652	0.431	0.00
1971 - 1985	5.652	5.685	-26.121	-0.28
1985 - 1997	5.685	5.705	-21.610	-0.27
1997 - 2003	5.705	5.549	-20.925	-0.54
2003 - 2008	5.549	5.469	-23.846	-0.72
2008 - 2013	5.469	5.350	-27.818	-0.88
Gorner				
1931 - 1982	64.695	41.640 *	-1279.414	-0.40
1982 - 2003	41.640 *	38.247 *	-698.299	-0.71
2003 - 2007	38.247 *	52.675	-249.013	-1.11
Gries				
1923 - 1961	7.719	6.657	-217.286	-0.68
1961 - 1967	6.657	6.422	-11.233	-0.25
1967 - 1979	6.422	6.362	1.579	0.02
1979 - 1986	6.362	6.078	-25.496	-0.49
1986 - 1991	6.078	5.798	-41.536	-1.20
1991 - 1998	5.798	5.769	-40.891	-0.86
1998 - 2003	5.769	5.264	-26.186	-0.81
2003 - 2007	5.264	4.969	-38.903	-1.59
2007 - 2012	4.969	5.138	-43.149	-1.46
Grosser Aletsch				
1927 - 1957	90.755	86.539	-1533.000	-0.49
1957 - 1980	86.539	86.616	-505.000	-0.22
1980 - 1999	86.616	83.015	-1095.000	-0.58
1999 - 2009	83.015	84.823	-989.798	-1.01
	00.010			±.01

Hohlaub				
1932 - 1956	2.987	2.421	-24.010	-0.31
1956 - 1967	2.421	2.426	0.887	0.03
1967 - 1982	2.426	2.505	10.428	0.24
1982 - 1991	2.505	2.408	-21.107	-0.81
1991 - 1999	2 408	2 415	-5 547	-0.25
1000 - 2004	2.100	2.710	-6.425	-0.47
2004 - 2008	2.415	2.230	-5 870	-0.57
2004 2000	2.250	2.103	-10.05/	-1.06
2000 2012	2.105	2.145	10.554	1.00
Kessien				
1956 - 1967	0.627	0.576	-1.110	-0.14
1967 - 1982	0.576	0.525	0.268	0.03
1982 - 1991	0.525	0 481	-4 958	-0.93
1991 - 1999	0.481	0 431	-2 258	-0.53
1999 - 2004	0 431	0 195	0.326	0.18
2004 - 2008	0.195	0.146	-1 189	-1 49
2008 - 2012	0.146	0.283	-1 947	-1.90
2000 2012	0.110	0.200	1.0 11	1.50
Limmern				
1947 - 1959	2.708	2.490	-15.166	-0.41
1959 - 1977	2.490	2.479	4.426	0.08
1977 - 1986	2.479	2.385	1.431	0.06
1986 - 2000	2.385	2.237	-19.541	-0.52
Moming				
1932 - 1962	6.883	6.238	-76.615	-0.33
1962 - 1988	6.238	6.337	33.681	0.18
1988 - 1995	6.337	6.034	-24.561	-0.47
1995 - 2006	6.034	5.450	-59.013	-0.80
Morteratsch				
1935 - 1955	18.816	17.684	-293.348	-0.68
1955 - 1985	17.684	17.192	-53.059	-0.09
1985 - 2008	17.192	15.266	-378.279	-0.86
Oberaar				
1927 - 1947	8.860	7.498	-130.651	-0.68
1947 - 1961	7.498	7.131	-61.062	-0.51
1961 - 2009	7.131	5.035	-166.339	-0.48
Pizol		0.470	0.405	0.00
1968 - 1973	0.243	0.176	-0.425	-0.36
1973 - 1979	0.176	0.190	0.070	0.05
1979 - 1985	0.190	0.212	0.376	0.27
1985 - 1990	0.212	0.192	-0.346	-0.30
1990 - 1997	0.192	0.128	-0.854	-0.64
1997 - 2006	0.128	0.077	-0.823	-0.76

Plattalva				
1947 - 1959	0.752	0.637 *	-5.421	-0.55
1959 - 1977	0.637 *	0.868	0.774	0.05
1977 - 1986	0.868	0.778	-0.420	-0.05
1986 - 2000	0.778	0.578	-6.168	-0.56
Rhone				
1929 - 1959	18.241	17.144	-182.776	-0.29
1959 - 1980	17.144	17.323	59.169	0.14
1980 - 1991	17.323	16.757	-149.719	-0.68
1991 - 2000	16.757	16.450	-66.261	-0.38
2000 - 2007	16.450	15.933	-114.810	-0.85
Schwarzberg				
1932 - 1956	7.343	5.580	-58.828	-0.32
1956 - 1967	5.580	5.473	-5.819	-0.08
1967 - 1982	5.473	6.232	35.295	0.34
1982 - 1991	6.232	5.521	-38.296	-0.62
1991 - 1999	5.521	5.496	-19.567	-0.38
1999 - 2004	5.496	5.332	-18.572	-0.58
2004 - 2008	5.332	5.305	-23.312	-0.94
2008 - 2012	5.305	5.175	-22.993	-0.92
Seewijnen				
1932 - 1956	2.220	1.897	-20.399	-0.35
1956 - 1967	1.897	1.802	-2.941	-0.12
1967 - 1982	1.802	1.829	8.256	0.26
1982 - 2004	1.829	1.538	-25.714	-0.59
2004 - 2008	1.538	1.472	-7.288	-1.04
2008 - 2012	1.472	1.403	-7.354	-1.07
Silvretta				
1938 - 1959	3.557	3.228	-28.666	-0.34
1959 - 1973	3.228	3.147	-4.822	-0.09
1973 - 1986	3.147	3.139	9.488	0.20
1986 - 1994	3.139	3.010	-20.021	-0.70
1994 - 2003	3.010	2.893	-13.992	-0.45
2003 - 2007	2.893	2.786	-14.422	-1.05
2007 - 2012	2.786	2.710	-16.457	-1.04
Trient				
1933 - 1982	6.834	6.509	-15.606	-0.04
1982 - 1991	6.509	6.394	-24.803	-0.36
1991 - 2005	6.394	5.875	-52.586	-0.52
2005 - 2012	5.875	5.737	-31.232	-0.65

Trift				
1929 - 1959	18.683	10.935 *	-256.884	-0.49
1959 - 1980	10.935 *	16.881	94.996	0.28
1980 - 1990	16.881	16.343	-99.497	-0.51
1990 - 1995	16.343	16.232	-76.299	-0.77
1995 - 2000	16.232	15.736	-57.801	-0.63
2000 - 2003	15.736	15.335	-50.473	-0.91
2003 - 2008	15.335	14.657	-73.421	-0.83
2008 - 2013	14.657	14.622	-103.612	-1.22
Unteraar				
1927 - 1947	27.473	27.405	-409.315	-0.64
1947 - 1961	27.405	25.486	-259.293	-0.59
1961 - 1981	25.486	25.550	-167.452	-0.28
1981 - 1997	25.550	24.124	-361.410	-0.77
1997 - 2003	24.124	22.727	-140.184	-0.86
2003 - 2009	22.727	22.627	-281.714	-1.73
Unterer Grindelw	ald			
1926 - 2000	24.300	21.400	-560.000	-0.28
2000 - 2004	21.400	20.600	-60.000	-0.61
Verstancla				
1938 - 1959	1.568	1.224	-11.099	-0.32
1959 - 1973	1.224	1.199	0.915	0.05
1973 - 2003	1.199	1.078	-9.684	-0.24
2003 - 2007	1.078	0.938	-5.928	-1.22
Weisshorn				
1932 - 1962	4.454	3.606	-46.141	-0.32
1962 - 1988	3.606	3.885	14.311	0.13
1988 - 1995	3.885	3.636	-20.474	-0.65
1995 - 2006	3.636	3.099	-29.421	-0.68
Zinal				
1932 - 1962	16 956	15.581	-229,211	-0 40
1962 - 1988	15.581	14.859	-1.194	-0.00
1988 - 1995	14.859	14.314	-66.935	-0.55
1995 - 2006	14.314	13.412	-149.910	-0.84

 * not the entire connected area covered

On Oberer Grindelwaldgletscher an almost 2 km long part of the glacier tongue was disconnected in summer 2013. The former snout is visible in the narrow gorge in the foreground, while the new terminus is located in the steep section in the background. (Photo: B. Petroni)

6 Velocity

6.1 Introduction

On some specific glaciers (Figure 6.1) long-term investigations are carried out with measurements of the surface flow velocity. The VAW/ETHZ has been contracted by two hydro-electric power companies Kraftwerke Mattmark, and Forces Motrices de Mauvoisin SA to survey the glaciers in the operated catchments. The main objective of this research assignment is to observe the flow conditions of the glaciers, particularly with regard to their potential threat to the buildings and operation of the power station in the valley. The observations are mainly focused on the two glaciers Giétro and Corbassière in the Mauvoisin area (Val de Bagnes) and the two glaciers Allalin and Schwarzberg in the Mattmark area (Saastal).

From 1924 until 1998 the ablation areas of the Aaregletscher (Figure 6.6) were geodetically measured and reported each year by the Flotron AG geodetic surveying firm on behalf of the Oberhasli

Figure 6.1: Investigated glaciers for surface velocity measurements.

The Swiss Glaciers 2011/12 and 2012/13

hydro-electric power company (KWO). Starting in 1998, investigations were carried out only once in a 5-year period. Detailed information with annual movement values for 2012/13 and ice volume change for 2009-13 in the ablation area for the two glaciers Oberaar and Unteraar, is given in the reports on the measurement of the Aaregletscher (Flotron, 2010). The main results are provided in the present report (Tables 6.4 and 6.3) to carry on previous reporting.

Drilling using a mechanical hand-drill for the installation of a stake to measure surface flow speed and ablation on Glacier de Corbassière (Photo: A. Bauder)

6.2 Glacier du Giétro

Introduction

One of the longest measurement series in existence, for Glacier du Giétro (Figure 6.2) in the Val de Bagnes (Valais), is being continued by VAW/ETHZ under contract of the Forces Motrices de Mauvoisin SA. The aim of these annual observations is the early recognition of glacier break-off, which can endanger the dammed lake located in the outreach of ice avalanches. The measurements, which have been carried out for more than 40 years, include periods of glacier growth and recession (VAW, 1997, 1998; Bauder et al., 2002; Raymond et al., 2003). In addition, annual mass balance is determined at the stakes.

Figure 6.2: Surface topography and observational network of the Glacier du Giétro.

Figure 6.3 shows the surface flow velocity mesurements at 7 stakes along the central flow line of the glacier, taken since 1966. There are three distinct periods: in the first (1966-1976), the velocities in the accumulation area (stakes 1, 2 and 4) are approximately 5-20 m per year, in the central region of the glacier (stake 5) about 35 m per year and in the steep tongue area (stakes 6, 8 and 10) they are in the range of 50-90 m annually. The second period (1977 to 1982) is marked

by a distinct acceleration phase, in which the speeds (for example at stake 6) increase from 90 m to 120 m per year. From the middle of the 1980s onward, the velocities decrease sharply again and in the last years have reached the lowest values measured since 1966.

Investigations in 2011/12 and in 2012/13

Five stakes provided measurements of velocity and local mass balance. The field survey in fall 2012 was carried out on 17th September. At the end of August melt had occurred over almost the entire extent of the firn plateau, and of the snow accumulated during winter only a few thin patches remained. On 25th September 2013, the field measurements were taken for the second period. The position of the snowline was just below of the lower edge of the firn plateau on an altitude of about 3225 m a.s.l. Accumulation of winter snow was observed at the the stakes P1 and P2.

Stake	Peri Start	iod End	Coordinates (m / m / m a.s.l.)	Thickness change (m)	Velocity (m a ⁻¹)	Mass balance (mm w.e.)
P1	30.08.2011	17.09.2012	596143 / 92346 / 3310	-1.71	2.84	-920
P1	17.09.2012	25.09.2013	596143 / 92346 / 3310	0.22	2.66	250
P2	30.08.2011	17.09.2012	596605 / 92835 / 3255	-1.47	8.20	-840
P2	17.09.2012	25.09.2013	596605 / 92835 / 3255	0.41	8.09	455
P4	30.08.2011	17.09.2012	596211 / 93400 / 3195	-1.91	12.23	-1464
P4	17.09.2012	25.09.2013	596211 / 93400 / 3195	-0.43	11.94	-48
P5	30.08.2011	17.09.2012	595615 / 94303 / 3060	-1.94	17.05	-2880
P5	17.09.2012	25.09.2013	595615 / 94303 / 3060	-0.13	16.38	-1197
P6	30.08.2011	17.09.2012	594568 / 94497 / 2830		27.89	-4310
P6	17.09.2012	25.09.2013	594568 / 94497 / 2830		22.8	-2520

Table 6.1: Glacier du Giétro - Individual measurements of surface flow velocity, thickness change and annual balance.

Velocity in 2011/12 and in 2012/13

Due to the glacier retreat with complete icemelt at the glacier snout, the two sites P8 and P10 had to be abandoned and are no longer observed. The ongoing decrease in speed was more pronounced at the lower sites (P4 - P6) with higher values than on the flat area of the firn plateau (P1 - P2). This stems from the significant reduction in the ice thickness over the past several years.

Figure 6.3: Surface flow velocities (top) and thickness change (bottom) of the Glacier du Giétro at all 7 stakes. Note the gaps that hamper the interpretation of the total thickness change. The gray shaded area highlights the years of the current report.

6.3 Glacier de Corbassière

Introduction

Glacier de Corbassière (Figure 6.4) has been under observation since 1955 by taking length change measurements. This glacier was threatening the water intake of the Mauvoisin power company at the front of the tongue. In the ablation area of the glacier, two profiles with stakes are observed annually to determine the velocities and local mass balance (Table 6.2). Figure 6.5 shows the surface flow velocities for the two profiles since 1967.

Figure 6.4: Surface topography and observational network of the Glacier du Corbassière.

Investigations in 2011/12 and in 2012/13

The field surveys were carried out on 17th September 2012 and on 25th September 2013. As in previous years seven stakes were maintained on the glacier tongue. The continuous reduction in ice thickness and glacier width in the lower profile increasingly impeded surveying activities and efforts to restore the stakes to their initial position.

Velocity in 2011/12 and in 2012/13

Ice velocity decreased at all stakes except A2 during these two periods. The stagnation of A2 may stem from a shift in the initial position. The general trend toward steadily decreasing ice flow velocity accompanied by a lowering of the surface height is sustained.

Figure 6.5: Surface flow velocities (top) and thickness change (bottom) of the Glacier de Corbassière at two profiles with 3 stakes each and the additional stake in between. The gray shaded area highlights the years of the current report.

	Table 6.2:	Glacier	de	Corbassière	-	Individual	measurements	of	surface	flow	velocity,
thickness change and annual balance.											

Stake	Period		Coordinates	Thickness	Velocity	Mass
	Start	End	(m / m / m a.s.l.)	(m)	$(m a^{-1})$	(mm w.e.)
B2	30.08.2011	17.09.2012	589577 / 93202 / 2650	-3.05	10.05	-4068
B2	17.09.2012	25.09.2013	589577 / 93202 / 2650	-1.61	9.92	-2799
B4	30.08.2011	17.09.2012	589392 / 93101 / 2650	-3.17	17.24	-4455
B4	17.09.2012	25.09.2013	589392 / 93101 / 2650	-1.76	17.05	-3078
B6	30.08.2011	17.09.2012	589230 / 93012 / 2655	-2.87	18.23	-4167
B6	17.09.2012	25.09.2013	589230 / 93012 / 2655	-1.40	17.86	-2934
R	30.08.2011	17.09.2012	589150 / 93650 / 2620	-3.73	12.54	-4851
R	17.09.2012	25.09.2013	589150 / 93650 / 2620	-2.41	12.16	-3618
A2	30.08.2011	17.09.2012	588650 / 94315 / 2475		6.27	-6381
A2	17.09.2012	25.09.2013	588650 / 94315 / 2475		7.39	-4878
A4	30.08.2011	17.09.2012	588450 / 94257 / 2460	-5.59	5.91	-4869
A4	17.09.2012	25.09.2013	588450 / 94257 / 2460	-4.48	4.98	-4491
A6	30.08.2011	17.09.2012	588273 / 94207 / 2470	-4.58	1.46	-3627
A6	17.09.2012	25.09.2013	588273 / 94207 / 2470		1.12	-2709

6.4 Aaregletscher

Introduction

Ice flow velocity and thickness change has been systematically observed along transverse profiles since the 1920s on the Unteraargletscher, and later on an extended network on Oberaargletscher (Figure 6.6).

Starting in 1996, aerial photographs of the two glaciers were processed using digital photogrammetric analysis tools. Generation of an orthophoto mosaic and a digital elevation model (DEM) of the glacier surface are standard products, opening up new possibilities for the evaluation of glacier movements. Digital elevation models have been further refined since 1997, allowing even more detailed representations of local ablation and accumulation to be made.

The use of digital photogrammetry has made it possible to improve the spatial resolution of the DEM drastically. The grid size of the measured points is 3 m enhanced by additional break-lines (terrain edges). Using the method of simultaneous mono-plotting (Flotron, 1979; Kääb, 1996), horizontal displacement is determined with an estimated accuracy of 0.3 m along the 17 profiles (Figure 6.7).

Figure 6.6: Outline and observational network of the Aaregletscher.

Investigations on ice flow velocities

Aerial photographs have been acquired on September 17th, 2012, and September 4th, 2013. The observation period for the determination of the movement is 352 days. In accordance of a continued decrease in thickness, the flow velocities have also steadily decreased (Figure 6.7, Table 6.4).

Figure 6.7: Surface ice flow velocities (top) and thickness change (bottom) of the Aaregletscher at five selected transverse profiles since 1924. The gray shaded area highlights the years of the current report.

Investigations of thickness change

The observation period of 1477 days spans the interval since the previous report in fall 2009. The reduction in glacier size in the terminus areas goes along with a mean thickness decrease in all the analysed profiles (Figure 6.7, Table 6.4) and an ice volume loss (Table 6.3) in all sections. These changes can be observed clearly with the aid of ortho-photos, contour line maps and cross-sectional profiles. The mean lowering of Unteraargletscher and Oberaargletscher amounts to 12.2 m and 13.1 m, respectively, relating to the investigated surface area of 11.76 km², and 1.24 km². These results correspond to a total volume loss of 143.4 million m³ for Unteraargletscher, and 16.3 million m³ for Oberaargletscher (Table 6.3), respectively. In comparison with the two previous four-year intervals (2001-05 and 2005-09), the total loss has been increased in each period. But the mean annual change is still significantly less than the record annual change in 1997/98.

Section	Area change (m ²)	Volume change (m ³)	Section	Area change (m ²)	Volume change (m ³)
Unteraar Z - 2	49'142	-932'354	Oberaar Z - 15	12'908	-2'860'773
2 - 3		-10'542'884	15 - 16		-6'968'261
3 - 4		-10'841'994	16 - 17		-6'437'112
4 - 5		-15'634'838			
5 - 6		-17'391'325			
6 - 7/10		-26'644'246			
Lauteraar			Unteraar		-81′987′641
7 - 8		-17'502'198	Lauteraar		-30'124'885
8 - 9		-12'622'687	Finsteraar		-31'277'180
Finsteraar			Oberaar		-16'266'147
10 - 11		-16'849'564	total		-159'655'853
11 - 12/13	3	-14′427′616			

Table 6.3: Aaregletsche	er -	Change	of	area	and	volume	in	the	period	2005	-	2009
-------------------------	------	--------	----	------	-----	--------	----	-----	--------	------	---	------

Profile	Period		Coordinates	Thickness change	Velocity
	Start	End	(m / m / m a.s.l.)	(m)	$(m a^{-1})$
2	19.08.2009	04.09.2013	662085 / 157605 / 1979	-2.9	
	17.09.2012	04.09.2013			1.3
3	19.08.2009	04.09.2013	661020 / 157500 / 2080	-9.9	
	17.09.2012	04.09.2013			7.7
4	19.08.2009	04.09.2013	659990 / 157335 / 2172	-10.3	
	17.09.2012	04.09.2013			9.4
5	19.08.2009	04.09.2013	658845 / 157710 / 2241	-11.2	
	17.09.2012	04.09.2013			14.1
6	19.08.2009	04.09.2013	657690 / 157815 / 2318	-12.6	
	17.09.2012	04.09.2013			18.1
7	19.08.2009	04.09.2013	656655 / 158385 / 2389	-12.7	
	17.09.2012	04.09.2013			16.6
8	19.08.2009	04.09.2013	655670 / 159405 / 2479	-9.7	
	17.09.2012	04.09.2013			20.5
9	19.08.2009	04.09.2013	654770 / 160440 / 2612	-9.0	
	17.09.2012	04.09.2013			21.6
10	19.08.2009	04.09.2013	656780 / 156650 / 2411	-11.0	
	17.09.2012	04.09.2013			17.6
11	19.08.2009	04.09.2013	655635 / 155730 / 2533	-10.4	
	17.09.2012	04.09.2013			24.3
12	19.08.2009	04.09.2013	654620 / 155735 / 2594	-8.5	
	17.09.2012	04.09.2013			12.7
13	19.08.2009	04.09.2013	654740 / 155060 / 2623	-8.5	
	17.09.2012	04.09.2013			
15	19.08.2009	04.09.2013	660420 / 154215 / 2443	-9.4	
	17.09.2012	04.09.2013			3.9
16	19.08.2009	04.09.2013	659610 / 153930 / 2520	-11.5	
	17.09.2012	04.09.2013			5.2
17	19.08.2009	04.09.2013	658850 / 153710 / 2644	-9.7	
	17.09.2012	04.09.2013			7.2

Table 6.4: Aaregletscher - Individual measurements of surface flow velocity and thickness change

6.5 Mattmark

Introduction

The first ice flow velocity and mass balance measurements in the Mattmark area date back to 1955 (VAW, 1999; Antoni, 2005). Investigations were carried out with a network of up to 22 stakes on the glaciers Allalin, Hohlaub, Kessjen, Schwarzberg and Tälliboden. Currently, measurements are continued on 11 selected stakes as part of the investigations by VAW/ETHZ for the Mattmark hydro-power company (Figure 6.8). Figure 6.9 shows surface flow velocities on Allalingletscher.

Figure 6.8: Surface topography and observational network of the Mattmark glaciers.

Investigations in 2011/12

The measurement period at the stakes on Schwarzberggletscher, Hohlaub as well as those on Allalingletscher began on 6^{th} September 2011 and ended on 5^{th} October 2012. Results for horizontal

flow velocity and thickness change for each glacier are given in Tables 6.5, 6.6 and 6.7.

Figure 6.9: Surface flow velocities (top) and thickness change (below) of the Allalingletscher at 5 stakes. The gray shaded area highlights the years of the current report.

Investigations in 2012/13

The field survey was carried out on August 29th, 2013. The results of the horizontal flow velocity and thickness change for each individual glacier are presented in Tables 6.5, 6.6 and 6.7.

Stake	Period		Coordinates	Thickness change	Velocity	Mass balance
	Start	End	(m / m / m a.s.l.)	(m)	$(m a^{-1})$	(mm w.e.)
100	06.09.2011	05.10.2012	636360 / 98710 / 3230	-2.21	33.12	-2608
100	05.10.2012	29.08.2013	636360 / 98710 / 3230	1.33		
101	06.09.2011	05.10.2012	638400 / 99360 / 2850	-3.16	13.55	-4050
101	05.10.2012	29.08.2013	638400 / 99360 / 2850	-0.43	12.64	-1269
102	06.09.2011	05.10.2012	638350 / 99480 / 2850	-2.85		-4050
102	05.10.2012	29.08.2013	638350 / 99480 / 2850	0.06		-800
103	06.09.2011	05.10.2012	638325 / 99575 / 2855	-3.12	16.62	-3645
103	05.10.2012	29.08.2013	638325 / 99575 / 2855	0.57		-800
104	06.09.2011	05.10.2012	638290 / 99665 / 2865	-2.99	17.42	-3645
104	05.10.2012	29.08.2013	638290 / 99665 / 2865	-0.20	15.94	-1134
105	06.09.2011	05.10.2012	638260 / 99755 / 2885	-3.48	19.24	-4500
105	05.10.2012	29.08.2013	638260 / 99755 / 2885	0.33	17.30	-1440
106	06.09.2011	05.10.2012	637095 / 97810 / 3375	-1.94	3.18	-976
106	05.10.2012	29.08.2013	637095 / 97810 / 3375	0.68	3.60	576

Table 6.5: Allalingletscher - Individual measurements of surface flow velocity, thickness change and annual balance.

Table 6.6: Hohlaubgletscher - Individual measurements of surface flow velocity, thickness change and annual balance.

Stake	Period		Coordinates	Thickness change	Velocity	Mass balance	
	Start	End	(m / m / m a.s.l.)	(m)	$(m a^{-1})$	(mm w.e.)	
110	06.09.2011	05.10.2012	637405 / 100710 / 3050	-2.69	10.02	-2400	
110	05.10.2012	29.08.2013	637405 / 100710 / 3050	-0.14	9.62	-384	

Table 6.7:	Schwarzberggletscher	- Individual	measurements	of	surface	flow	velocity,
	thickness change and a	innual balan	ce.				

Stake	Per Start	iod End	Coordinates (m / m / m a.s.l.)	Thickness change (m)	Velocity (m a ⁻¹)	Mass balance (mm w.e.)
120 120 123 123 124 124	06.09.2011 05.10.2012 06.09.2011 05.10.2012 06.09.2011	05.10.2012 29.08.2013 05.10.2012 29.08.2013 05.10.2012 29.08.2013	638320 / 96220 / 2880 638320 / 96220 / 2880 638525 / 96730 / 2805 638525 / 96730 / 2805 638062 / 95212 / 2985 638062 / 95212 / 2985	-2.87 -0.78 -3.04 -1.49 -2.72 0.43	7.88 6.61 6.27 4.89 7.54	-3402 -1008 -3231 -1611 -2799 -200

Triftgletscher in 2006 (top) and 2013 (bottom) with the retreat from the lake and after the tongue broke apart in the steep section (Photos: VAW/ETH Zürich)

References

- Antoni, C. (2005). Langjährige Messreihen in den Schweizer Alpen. Praktikumsararbeit ausgeführt an der VAW, ETH Zürich, unter Anleitung von A. Bauder (unveröffentlicht).
- Bamber, J. L. and Rivera, A. (2007). A review of remote sensing methods for glacier mass balance determination. *Global and Planetary Change*, 55(1-4):138–148.
- Bauder, A., Funk, M., and Bösch, H. (2002). Glaziologische Untersuchungen am Glacier de Giétro im Zusammenhang mit der Sicherheit der Stauanlage Mauvoisin. In *Moderne Methoden und Konzepte im Wasserbau*, volume 175, (Band 2), pages 419–431. Mitteilung der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich. Internationales Symposium 7.-9. Oktober 2002 in Zürich.
- Bauder, A., Funk, M., and Huss, M. (2007). Ice volume changes of selected glaciers in the Swiss Alps since the end of the 19th century. *Annals of Glaciology*, 46:145–149.
- Begert, M., Schlegel, T., and Kirchhofer, W. (2005). Homogeneous temperature and precipitation series of switzerland from 1864 to 2000. *International Journal of Climatology*, 25(1):65–80.
- Cogley, J. G. (2009). Geodetic and direct mass balance measurements: comparison and joint analysis. *Annals of Glaciology*, 50(50):96–100.
- Finger, D., Hugentobler, A., Huss, M., Voinesco, A., Wernli, H., Fischer, D., Weber, E., Jeannin, P.-Y., Kauzlaric, M., Wirz, A., Vennemann, T., Hüsler, F., Schädler, B., and Weingartner, R. (2013). Identification of glacial melt water runoff in a karstic environment and its implication for present and future water availability. *Hydrology and Earth System Sciences*, 17(8):3261–3277.
- Firnberichte (1914–1978). Der Firnzuwachs 1913/14–1976/77 in einigen schweizerischen Firngebieten, number 1-64 in Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich. Jahresberichte herausgegeben von der Gletscher-Kommission der Physikalischen Gesellschaft Zürich, später Schweizerische Meteorologische Zentralanstalt und ab 1973 durch A. Lemans.
- Fischer, M., Huss, M., Barboux, C., and Hoelzle, M. (2014). The new swiss glacier inventory SGI2010: Relevance of using high-resolution source data in areas dominated by very small glaciers. Arctic, Antarctic, and Alpine Research, 46(4):933–945.
- Fischer, M., Huss, M., and Hoelzle, M. (2013). Recent changes of very small glaciers in the swiss alps. *Geophysical Research Abstracts*, 15:EGU2013–149. EGU General Assembly 2013.
- Fischer, M., Huss, M., and Hoelzle, M. (2015). Surface elevation and mass changes of all Swiss glaciers 1980–2010. The Cryosphere, 9(2):525–540.
- Flotron (1924–2010). Vermessung der Aaregletscher. Jährliche Berichte im Auftrag der Kraftwerke Oberhasli AG (unveröffentlicht).

- Flotron, A. (1979). Verschiebungsmessungen aus Luftbildern. In Festschrift Peter Kasser, volume 41, pages 39–44. Mitteilungen der Versuchsanstalt f
 ür Wasserbau, Hydrologie und Glaziologie, Gloriastrasse 37-39, CH-8092 Z
 ürich.
- Gardner, A. S., Moholdt, G., Cogley, J. G., Wouters, B., Arendt, A. A., Wahr, J., Berthier, E., Hock, R., Pfeffer, W. T., Kaser, G., Ligtenberg, S. R. M., Bolch, T., Sharp, M. J., Hagen, J. O., van den Broeke, M. R., and Paul, F. (2013). A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. *Science*, 340(6134):852–857.
- Glaciological reports (1881–2015). The Swiss Glaciers, 1880–2010/11. Yearbooks 1-132, Cryospheric Commission of the Swiss Academy of Sciences (SCNAT). published since 1964 by Laboratory of Hydraulics, Hydrology and Glaciology (VAW) of ETH Zürich, http://glaciology.ethz.ch/swiss-glaciers/.
- Hoelzle, M., Haeberli, W., Dischl, M., and Peschke, W. (2003). Secular glacier mass balances derived from cumulative glacier length changes. *Global and Planetary Change*, 36(4):295–306.
- Huss, M. (2010). Mass balance of Pizolgletscher. *Geographica Helvetica*, 65(2):80–91.
- Huss, M. (2013). Density assumptions for converting geodetic glacier volume change to mass change. *The Cryosphere*, 7(3):877–887.
- Huss, M. and Bauder, A. (2009). 20th-century climate change inferred from four long-term point observations of seasonal mass balance. *Annals of Glaciology*, 50(50):207–214.
- Huss, M., Bauder, A., and Funk, M. (2009). Homogenization of long-term mass-balance time series. *Annals of Glaciology*, 50(50):198–206.
- Huss, M., Sold, L., Hoelzle, M., Stokvis, M., Salzmann, N., Farinotti, D., and Zemp, M. (2013). Towards remote monitoring of sub-seasonal glacier mass balance. *Annals of Glaciology*, 54(63):75–83.
- Kääb, A. (1996). Photogrammetrische Analyse zur Früherkennung gletscher- und permafrostbedingter Naturgefahren im Hochgebirge. Mitteilungen 145, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich, Gloriastrasse 37-39, CH-8092 Zürich. pp. 182.
- Kasser, P., Aellen, M., and Siegenthaler, H. (1986). Clariden. In *Die Gletscher der Schweizer Alpen, 1977/78 und 1978/79*, volume 99/100 of *Glaziologisches Jahrbuch der Gletscherkommission SNG*, pages 142–148. Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich.
- Kasser, P. and Röthlisberger, H. (1966). Some problems of glacier mapping experienced with the 1:10'000 map of the Aletsch Glacier. *Canadian Journal of Earth Sciences*, 3(6):799–809.
- Machguth, H. (2008). On the Use of RCM Data and Gridded Climatologies for Regional Scale Glacier Mass Balance Modeling in High Mountain Topography; The Example of the Swiss Alps. PhD thesis, University of Zürich. 196 pp.
- Mercanton, P. L. (1916). Vermessungen am Rhonegletscher, Mensurations au Glacier du Rhône, 1874–1915. Neue Denkschriften der Schweizerischen Naturforschenden Gesellschaft, 52.
- Müller, H. and Kappenberger, G. (1991). Claridenfirn-Messungen 1914-1984. Technical Report 40, Zürcher Geographische Schriften, Geographisches Institut der ETH Zürich. pp. 79.

- Naegeli, K., Damm, A., Huss, M., Schaepman, M., and Hoelzle, M. (2015). Imaging spectroscopy to assess the composition of ice surface materials and their impact on glacier mass balance. *Remote Sensing of Environment*, 168:388–402.
- Ohmura, A., Bauder, A., Müller, H., and Kappenberger, G. (2007). Long-term change of mass balance and the role of radiation. *Annals of Glaciology*, 46:367–374.
- Raymond, M., Wegmann, M., and Funk, M. (2003). Inventar gefährlicher Gletscher in der Schweiz. Mitteilungen 182, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich, Gloriastrasse 37-39, CH-8092 Zürich. pp. 368.
- Signer, N. (2014). Analysis of ice temperatures of four selected very small glaciers in the Swiss Alps by means of modelling and ground penetrating radar. MSc thesis (unpublished), Department of Geography, Universität Zürich.
- Sold, L., Huss, M., Eichler, A., Schwikowski, M., and Hoelzle, M. (2015). Unlocking annual firn layer water equivalents from ground-penetrating radar data on an Alpine glacier. *The Cryosphere*, 9(3):1075–1087.
- VAW (1997). Gletscherveränderungen im Val de Bagnes 1966 1996. Untersuchungen im Zusammenhang mit den Anlagen der Kraftwerke Mauvoisin AG. Zusammenfassend dargestellte Hauptergebnisse der jährlichen Messungen. Bericht Nr. 7903.55.04 (M. Aellen, unveröffentlicht). Im Auftrag der Kraftwerke Mauvoisin AG.
- VAW (1998). Mauvoisin Giétrogletscher Corbassièregletscher. Glaziologische Studien im Zusammenhang mit den Stauanlagen Mauvoisin. Bericht Nr. 55.05.7903 (M. Funk, unveröffentlicht). Im Auftrag der Elektrizitätsgesellschaft Lauffenburg AG.
- VAW (1999). Mattmark Zusammenfassender Bericht über die hydrologischen und glaziologischen Messungen im Mattmarkgebiet. Bericht Nr. 7902.52.45 (H. Bösch und M. Funk, unveröffentlicht), Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich. Im Auftrag der Kraftwerke Mattmark AG.
- WGMS (2013). Glacier Mass Balance Bulletin No. 12, (2010–2011). ICSU(FAGS)–IUGG(IACS)– UNEP–UNESCO–WMO, World Glacier Monitoring Service, Zurich.

Acknowledgements

The Cryospheric Commission again received solid support in this 133rd/134th measuring period from its reliable team of observers. Sincere thanks for their cooperation are extended to: the forestry services from the cantons of Berne, Glarus, Grisons, Obwalden, St. Gallen, Uri, Ticino, Vaud and Wallis, the staff of the hydro-power stations Aegina, Mattmark and, Mauvoisin, all the individual helpers, the Aerial Photography Flying and Coordination Service (CCAP) of the Swiss Federal Office of Topography swisstopo and Flotron AG (Gümligen). The Laboratory of Hydraulics, Hydrology and Glaciology (VAW) of the ETH Zürich, colleagues from the national weather service MeteoSwiss, the Geographical Institutes of the University of Fribourg and Zürich provided valuable contributions to the publication of this glaciological report. A special vote of thanks goes to Susan Braun-Clarke for translating and proof-reading the report.

A Remote Sensing

A.1 Aerial photographs

Aerial photographs were taken at periodic intervals in order to provide a baseline documentation for various applications (mapping, glacier change, natural hazards, etc). In addition to the periodical surveys conducted by the Swiss Federal Office of Topography (swisstopo), high resolution aerial photographs have been acquired which are designed in particular for glaciological applications. In addition to the aerial photographs listed in the following tables (A.1 and A.2), other aerial photos for updating the National Maps are available from swisstopo. In the year 2012, pictures were taken for the sheets 1:50'000 nos. 254, 258, 259, 265, 266, 267, 268, 269, 275, 276, 277, 278, 279, 284 and 294 and in 2013 for nos. 236, 245, 246, 255, 256, 257, 262, 263, 272, 273, 282, 283, 292 and 293, respectively. More detailed information is available on swisstopo's webviewer http://www.luftbildindex.ch.

Figure A.1: Aerial photographs from the years 2012 and 2013.

The Swiss Glaciers 2011/12 and 2012/13

Table A.1: Aerial photographs taken in 2012.

	lotographs		.012.		
Glaciers	Ct.	Date	Line No.	Scale	Туре
Balfrin ^p , Bider ^c , Hohbalm ^p , Fall ^p , Fee ^p ,	VS	14.09.12	201209141100	0.25	is
Ressjen -, Homaud -, Amann - Dirch & Nort & Stamphach B, Joli & Distach B	VC	07 00 10	201209271000	0.05	ic
Birch ⁺ , Nest ⁺ , Stampbach ⁺ , Joh ⁺ , Bietsch ⁺ ,	V.5	21.00.12	201206271000	0.25	15
	\/S	20 00 12			col
Eiger C Guggi ^c Giesen ^c Rottal ^p Breit-	RE	20.09.12	201208271200	0.25	is
louwenen ^c Schmadri ^c Breithorn ^p legi ^p	DL	21.00.12	201200271200	0.25	15
Figer ^p Guggi ^p Giesen ^p	RE VS	17 09 12			col
Fee^{p} Allalin ^p Hohlaub ^p Chessien ^p	VS	20 09 12			col
Schwarzberg ^p , Seewjinen ^p , Fall ^c , Ho-					
hbalm ^P , Ried ^P , Bider ^P , Balfrin ^P		00 00 10			
Fee ^P , Allalin ^P , Hohlaub ^P , Chessjen ^P , Seewji-	VS	20.09.12			COI
nen ^e , Hondaim ^e , Bider ^e , Baitrin ^e	VC	20.00.12			col
Hobberg P Died P	V5	20.09.12			COI
Honberg ⁺ , Ried ⁺	\/C	20.00.12			col
Soowiinon ^p Fall ^p Hobbalm ^p Pied ^p	۷3	20.09.12			COI
Eee^{p} Allalin ^p Schwarzberg ^p Hobberg ^p	\/S	20.00.12			col
Fest p Kin p Weingarten p Mellich p Adler p	V.J	20.09.12			COI
Findelen ^p					
Fee ^p Allalin ^p Weingarten ^p Alphubel ^c Mel-	VS	20 09 12			col
lich ^p Adler ^p Findelen ^p	••	20.05.12			001
Findelen ^p	VS	14.09.12	201209141000	0.25	is
Finsteraar ^p , Unteraar ^p , Lauteraar ^p	BE	27.08.12	201208270900	0.25	is
Gauli ^p	BE	27.08.12	201208271100	0.25	is
Giétro ^p	VS	20.09.12			col
Gorner ^p	VS	14.09.12	201209141000	0.25	is
Grands ^p , Trient ^p , Saleina ^p	VS	14.09.12	201209140900	0.25	is
Gries ^c , Corno ^p , Blinnen ^p	VS	27.08.12	201208271000	0.25	is
Grosser Aletsch (Mönch Süd) ^p , Unt.	BE, VS	17.09.12			col
Grindelwald ^p , Guggi ^p , Giesen ^p					
Grosser Aletsch ^p	VS	27.08.12	201208271000	0.25	is
Gruben ^p , Mattwald ^c , Gamsa ^p	VS	14.09.12	201209141100	0.25	is
Gutz ^c , Ob. Grindelwald ^p , Rosenlaui ^p	BE	27.08.12	201208271200	0.25	is
Kin ^p , Weingarten ^p , Alphubel ^p	VS	14.09.12	201209141000	0.25	is
Lauteraar ^c , Ob. Grindelwald ^p , Finsteraar ^p ,	BE	27.08.12	201208271000	0.25	is
Unteraar ^p		07 00 10	00100071000	0.05	
Mutt ^e , Mutten ^p	VS	27.08.12	201208271000	0.25	IS
Mutten [®] , Witenwasseren [°] , Geren [°] , Chuebo-	VS, UR	27.08.12	201208271000	0.25	IS
den ^c , Pizzo Rotondo ^c	рг	07 00 10	001000071000	0.05	ia
Oberaar ^e Einsteraar ^e Einschar ^e		27.00.12	201206271000	0.25 0.25	is ic
Plaine Morte P Ammerton P Wildstrubal C	BE VC	27.00.12 17.00.10	201200270900	0.20	is ic
Plaine Morte ^p , Wildstruhel ^p Lämmern ^c	BE VS	14.09.12	201209141000	0.25	is
Rhone ^p	ی ۷۹	27 08 12	201203141000	0.25	is
		2		5.20	

Silvretta ^c , Verstancla ^c , Tiatscha ^p Trient ^p , Orny ^c , Saleina ^p , A Neuve ^c , Do-	GR VS	20.08.12 14.09.12	201208200900 201209140900	0.25 0.25	is is
Trient ^p , Orny ^p , Saleina ^p , A Neuve ^c , Do- lent ^p	VS	14.09.12	201209140900	0.25	is
Trift ^p	BE	27.08.12	201208271100	0.25	is
Turtmann ^p , Brunegg ^p , Bis ^p , Weisshorn ^p , Schali ^c , Moming ^p , Hohlicht ^c , Trift ^p	VS	14.09.12	201209141000	0.25	is
Unt. Grindelwald ^p	BE	27.08.12	201208271100	0.25	is
Unteraar ^c , Lauteraar ^p , Finsteraar ^p	BE	27.08.12	201208271100	0.25	is

Glacier shown completely Glacier shown partially С р

_

col colour frames is image stripe Type of acquisition:

Glaciers	Ct.	Date	Line No.	Scale	Туре
Allalin ^p , Hohlaub ^p , Chessjen ^p	VS	04.09.13			col
Basodino ^c	ΤI	21.08.13	201308210800	0.25	is
Birch ^c , Nest ^c , Stampbach ^p , Joli ^c , Bietsch ^p ,	VS	21.08.13	201308211000	0.25	is
Üssere Baltschieder ^p					
Bis ^p	VS	03.09.13	201309031000	0.25	is
Corbassiere ^p	VS	04.09.13			col
Eiger C, Guggi ^c , Giesen ^c , Rottal ^p , Breit-	BE	21.08.13	201308211100	0.25	is
louwenen ^c , Schmadri ^c , Breithorn ^p , Jegi ^p					
Eiger ^p , Guggi ^p , Giesen ^p	BE, VS	04.09.13			col
Findelen ^p	VS	20.08.13	201308201000	0.25	is
Finsteraar ^p , Unteraar ^p , Lauteraar ^p	BE	21.08.13	201308210900	0.25	is
Gauli ^p	BE	21.08.13	201308210800	0.25	is
Gietro ^p	VS	04.09.13			col
Gorner ^p	VS	20.08.13	201308201000	0.25	is
Gries ^c , Corno ^p , Blinnen ^p	VS	21.08.13	201308210800	0.25	is
Grosser Aletsch (Mönch Süd) ^p , Unt.	BE, VS	04.09.13			col
Grindelwald ^p , Guggi ^p , Giesen ^p					
Grosser Aletsch ^p	VS	21.08.13	201308211000	0.25	is
Gruben ^p , Mattwald ^c , Gamsa ^p	VS	20.08.13	201308201000	0.2	is
Gutz ^c , Ob. Grindelwald ^p , Rosenlaui ^p	BE	21.08.13	201308211100	0.25	is
Lauteraar ^c , Ob. Grindelwald ^p , Finsteraar ^p ,	BE	21.08.13	201308210900	0.25	is
Unteraar [®]					
Minstiger ^c , Bachi ^p , Oberaar ^p , Galmi ^c	VS, BE	21.08.13	201308210900	0.25	IS
Ob. Grindelwald ^P , Lauteraar ^P	BE	21.08.13	201308210900	0.25	IS
Oberaar [®] , Finsteraar [®] , Fiescher [®]	BE	21.08.13	201308210900	0.25	IS
Plaine Morte ^P , Ammerten ^P , Wildstrubel ^C	BE, VS	21.08.13	201308211000	0.25	IS
Strubel ^c , Steghorn ^c	BE, VS	21.08.13	201308211000	0.25	IS
Plaine Morte [°] , Wildstrubel [°] , Lämmern [°]	BE, VS	21.08.13	201308211000	0.25	is
Rhone ^p	VS	21.08.13	201308210800	0.25	is
Schwarzberg ^p	VS	04.09.13			col

Table A.2: Aerial photographs taken in 2013.

Seewjinen ^p , Schwarzberg ^p	VS	04.09.13			col
Sillere ^c , Balmhorn ^c , Altels ^c , Schwarz ^c ,		21.08.13	201308210900	0.25	is
Daubenhorn ^c , Doldenhorn ^c , Fründen ^c ,					
Oeschinen ^p					
Silvretta ^c , Verstancla ^c , Tiatscha ^p	GR	22.08.13	201308220900	0.25	is
Trift ^p	BE	03.09.13	201309030900	0.25	is
Turtmann ^p , Brunegg ^p , Bis ^p , Weisshorn ^p ,	VS	03.09.13	201309031000	0.25	is
Schali ^c , Moming ^p , Hohlicht ^c , Trift ^p					
Unt. Grindelwald ^p	BE	03.09.13	201309030900	0.25	is
Unteraar ^c , Lauteraar ^p , Finsteraar ^p	BE	21.08.13	201308210800	0.25	is
	-	· · · · ·			

c Glacier shown completely p Glacier shown partially

Type of acquisition: col colour is image stripe

Retreat of Vadret da Lischana in 2005 (top) and heavily debris covered in 2013 (bottom) (Photo: G.C. Feuerstein, AWN/GR)

B Remarks on Individual Glaciers

1 Rhone

2012: Luftbildaufnahmen am 27.8.2012, photogrammetrische Auswertung durch VAW/ETHZ. (VAW/ETHZ – A. Bauder)

2013: Luftbildaufnahmen am 23.9.2013, photogrammetrische Auswertung durch VAW/ETHZ. (VAW/ETHZ – A. Bauder)

3 Gries

2012: Luftbildaufnahmen am 27.8.2012, photogrammetrische Auswertung durch VAW/ETHZ. (VAW/ETHZ – A. Bauder)

2013: Luftbildaufnahmen am 21.8.2013, photogrammetrische Auswertung durch VAW/ETHZ. (VAW/ETHZ – A. Bauder)

4 Fiescher

2012: Der Gletscher ist im mittleren Bereich stark zurückgegangen. (P. Aschilier)

2013: Distanzen ausserhalb Messbereich des verwendeten elektronischen Distanzmessers. Keine Messung möglich. (P. Aschilier)

5 Grosser Aletsch

2012: Luftbildaufnahmen am 27.8.2012, photogrammetrische Auswertung durch VAW/ETHZ. (VAW/ETHZ – A. Bauder)

2013: Luftbildaufnahmen am 21.8.2013, photogrammetrische Auswertung durch VAW/ETHZ. (VAW/ETHZ – A. Bauder)

7 Kaltwasser

2012: Kleiner Rückgang gegenüber 2011 (M. Schmidhalter)

10 Schwarzberg

2012: Luftbildaufnahmen am 20.9.2012, photogrammetrische Auswertung durch VAW/ETHZ im Auftrag der Kraftwerke Mattmark AG. (VAW/ETHZ – A. Bauder)

2013: Luftbildaufnahmen am 4.9.2013, photogrammetrische Auswertung durch VAW/ETHZ im Auftrag der Kraftwerke Mattmark AG. (VAW/ETHZ – A. Bauder)

11 Allalin

2012: Luftbildaufnahmen am 20.9.2012, photogrammetrische Auswertung durch VAW/ETHZ im Auftrag der Kraftwerke Mattmark AG. (VAW/ETHZ – A. Bauder)

2013: Luftbildaufnahmen am 4.9.2013, photogrammetrische Auswertung durch VAW/ETHZ im Auftrag der Kraftwerke Mattmark AG. (VAW/ETHZ – A. Bauder)

12 Chessjen

2012: Luftbildaufnahmen am 20.9.2012, photogrammetrische Auswertung durch VAW/ETHZ im Auftrag der Kraftwerke Mattmark AG. (VAW/ETHZ – A. Bauder)

2013: Luftbildaufnahmen am 4.9.2013, photogrammetrische Auswertung durch VAW/ETHZ im Auftrag der Kraftwerke Mattmark AG. (VAW/ETHZ – A. Bauder)

14 Gorner

2012: Hinter dem Gletschertor gibt es wieder ein Loch von ca. 150x25m. (S. Walther)

16 Findelen

2012: Luftbildaufnahmen am 14.9.2012, photogrammetrische Auswertung durch VAW/ETHZ. (VAW/ETHZ – A. Bauder)

2013: Luftbildaufnahmen am 13.8.2013, photogrammetrische Auswertung durch VAW/ETHZ. (VAW/ETHZ – A. Bauder)

17 Ried

2013: Gletscherende nur noch knapp einsehbar vom Fixpunkt aus. (P. Rovina)

18 Lang

2013: Einsturz des Gletschertors im Sommer 2013. (H. Henzen)

19 Turtmann

2012: Grosser Rückzug, an Gletscherrand ist noch eine schmale Zunge vorhanden. (A. Brigger)

2013: Unterer Teil des Gletschers wird in wenigen Jahren vom Eiskörper oberhalb des Felsbandes abgetrennt sein. (A. Brigger)

20 Brunegg

2013: Toteis gemäss Messung 2011 im Vorfeld der Gletscherzunge ist vollständig verschwunden. (A.Brigger)

22 Zinal

2012: Changement de méthode de mesure (GPS) et des points de référence. Le recul est calculé depuis 2010. (P. Stoebener)

23 Moming

2012: Recul mesuré sur la moyenne de 2 mesures depuis cette année. (P. Stoebener)

24 Moiry

2012: Changement de méthode de mesure et des points de référence. Le recul est calculé depuis 2010. (P. Stoebener)

25 Ferpècle

2012: Depuis cette année le recul est calculé sur la moyenne de 2 mesures. (F. Pralong)

26 Mont-Miné

2012: Depuis cette année le recul est calculé sur la moyenne de 2 mesures. (F. Pralong)

27 Arolla

2012: Changement de l'axe de mesure, l'ancien n'étant plus représentatif. (F. Pralong)

28 Tsijdere Nouve

2012: Le recul a été mesuré sur une moyenne de 3 points. Jusqu'à présent il n'était mesuré que sur le point 2. (F. Pralong)

29 Cheillon

2012: Le petit lac s'agrandit (O. Bourdin)

2013: Grosse fonte de glace face au point 1, due à la réverbération de l'affleurement rocheux. (O. Bourdin)

30 En Darrey

2012: Les 2 parties du glacier sont complètement autonomes. (O. Bourdin)

2013: Les 2 parties du glacier sont autonomes. (O. Bourdin)

31 Grand Désert

2013: Entre les points B et 3, on constate une caverne dans la langue glaciaire. (F. Vouilla-moz)

32 Mont-Fort/Tortin

2013: Proglazialer See hat sich weiter ausgedehnt. (A.Bauder)

33 Tsanfleuron

2012: Depuis cette année moyenne sur 2 mesures (P. Stoebener)

34 Otemma

2012: Grosse crue, plus un seul repère proche, donc reneir à mon vieux Pt 15/95 à 800 m en aval du glacier pour établir le Pt 18/12 sur le bedrock apparut devant le front. Le portail

gauche a pratiquement disparu et la langue du glacier est toujours plus mince, par contre sous la caillasse et les blocs de rocher des 2 rives direction aval, la glace est encore bien là. (J.-J. Chabloz)

2013: Très forte diminution de la glace sous les moraines latérales, le socle rocheux est bien visible rive droite (nouveau Pt 19/13). Le front du glacier est toujours plus mince et le portail gauche est pratiquement inexistant. (J.-J. Chabloz)

35 Mont Durand

2012: Le trou au-dessus du front se creuse tellement qu'il va faire seffondrer la voûte du portail, à moins que? Plus haut le bedrock apparaît toujours plus et le torrent fait une belle cascade avant de s'engouffrer sous la partie inférieure du glacier. (J.-J. Chabloz)

2013: La voûte du portail s'est effondrée avec une partie du glacier. Le front se trouve à la jonction de l'amas rocheux au centre du glacier voir pratiquement au niveau de la base du ressaut central et d'ici peu le glacier sera séparé en deux bras, visée bloquée contre le bedrock. Crue très importante, beaucoup de rochers sur la glace. Rive droite sous le premier plateau bedrock bien dégagé maintenant entre le torrent et la langue du glacier. (J.-J. Chabloz)

36 Brenay

2012: Les 2 rives du glacier sont couvertes de caillasse et de blocs. La langue centrale dénudée s'aplatit toujours plus et recule. (J.-J. Chabloz)

2013: Très forte diminution de la glace sous les moraines latérales et recul très marqué du front. La langue est complètement amincie et pratiquement libre de blocs de rochers qui jonchent maintenant le plateau à l'aval du glacier. Plus en amont au niveau des séracs du Brenay ainsi que la rive droite sous la Serpentine, le bedrock est bien visible. (J.-J. Chabloz)

37 Giétro

2012: Luftbildaufnahmen am 20.9.2012, photogrammetrische Auswertung durch Flotron AG im Auftrag der Forces Motrices de Mauvoisin SA. Bestimmung der Längenänderung durch die VAW/ETHZ. (VAW/ETHZ – A. Bauder)

2013: Luftbildaufnahmen am 4.9.2013, photogrammetrische Auswertung durch Flotron AG im Auftrag der Forces Motrices de Mauvoisin SA. Bestimmung der Längenänderung durch die VAW/ETHZ. (VAW/ETHZ – A. Bauder)

38 Corbassière

2012: Luftbildaufnahmen am 20.9.2012, photogrammetrische Auswertung durch VAW/ETHZ im Auftrag der Forces Motrices de Mauvoisin SA. (VAW/ETHZ – A. Bauder)

2013: Luftbildaufnahmen am 13.8.2013, photogrammetrische Auswertung durch VAW/ETHZ im Auftrag der Forces Motrices de Mauvoisin SA. (VAW/ETHZ – A. Bauder)

39 Valsorey

2012: La largeur de la langue frontale est de 12 m, elle se prolonge sous les éboulis en rive droite probablement d'une dizaine de mètres. L'épaisseur de la langue est de 0.6 m. L'angle de la langue est de 32°. (J. Médico)

2013: Un important glissement de la moraine de la rive droite est descendue sur le glacier, ce qui rend difficile sa délimitation exacte. (J. Médico)

40 Tseudet

2012: Tout le bas du glacier est recouvert d'éboulis ce qui rend impossible la délimitation de la limite inférieure du glacier. (J. Médico)

2013: Le bas du glacier est très irrégulier et est recouvert d'éboulis. Il est très difficile de déterminer où s'arrête vraiment le glacier. (J. Médico)

43 Trient

2012: L'extrémité de la langue est toujours canalisée dans un rillon rocheux. La langue perd encore en épaisseur. De nombreuses crevasses sont bien visibles. De la glace éboulée forme la partie aval de la langue et se trouve en contact avec la glace vive. (J. Ehinger)

2013: L'extrémitéde la langue s'est cassée, mais rest encore attachée par la base au reste du glacier. Glace éboulée en de nombreux endroits. (J. Ehinger)

44 Paneyrosse

2012: Entre pts 58 et 59 petit lac diamètre 25 m. Diminution de l'épaisseur du glacier visible à l'oeil. Caillasse en surface. Reste des névés de l'hiver 2011-12. (J.-Ph. Marlétaz)

2013: Pt. 56 devient un névé séparé. Pt. 59 neige hiver 2012-13. (J.-Ph. Marlétaz)

45 Grand Plan Névé

2012: Reste des névés hiver 2011-12. Grotte glaciaire au Pts 83-84. (J.-Ph. Marlétaz)2013: Pts 82,83,84 présence de neige de l'hiver 2012-13. (J.-Ph. Marlétaz)

47 Sex Rouge

2012: P4: La glace n'est plus décelable de façon fiable. P5: Il y avait vraisemblablement un problème de mesure en 2009. La distance actuelle est bien de 20.70 m. P500: Nouveau point de mesure (J. Binggeli)

2013: La difficulté consistait, en particulier cette année, à déterminer plus précisément ce qui était névé ou glace en place ou en formation. (J. Binggeli)

48 Prapio

2012: Le secteur était encore partiellement recouvert de névé = dificulté de mesure mais on pouvait exclure un hypothétique avancement du glacier. (J. Binggeli)

2013: On note, surtout, le dépôt d'éboulis arrachés aux pentes dominantes par l'effet conjugué des eaux de surface et de la fonte. Le travail a été considérablement contrarié par ce dépôt d'éboulis recouvrant le pied du glacier. Quant à la structure et la morphologie du matériau nivologique collé au front du glacier "2011", elles s'apparentent plus au type névé qu'au type glace (même en formation). La mesure a pu finalement s'effectuer en partie avec la chevillière puis par estimation.(J. Binggeli)
52 Gauli

2013: Die Gletscherzunge reicht bis an den See, sie hat sich gegenüber dem Vorjahr nicht verkürzt, ist aber deutlich dünner geworden. Neue Messpunkte eingerichtet. (C. Simeon)

53 Stein

2013: Der Gletscher hat sich über das flache Gelände zurückgezogen. In der Mitte der Gletscherzunge grosser Fels sichtbar. (C. Simeon)

54 Steinlimi

2013: Gletscher hat sich gegenüber letztem Jahr nicht stark verändert, ist auf beiden Seiten durch Felsen begrenzt. (C. Simeon)

55 Trift (Gadmen)

2012: Luftbildaufnahmen am 27.8.2012, photogrammetrische Auswertung durch VAW/ETHZ. (VAW/ETHZ – A. Bauder)

2013: Luftbildaufnahmen am 22.8.2013, photogrammetrische Auswertung durch VAW/ETHZ. (VAW/ETHZ – A. Bauder)

57 Oberer Grindelwald

2012: Luftbildaufnahmen am 27.8.2012, photogrammetrische Auswertung durch VAW/ETHZ. (VAW/ETHZ – A. Bauder)

2013: Luftbildaufnahmen am 23.9.2013, photogrammetrische Auswertung durch VAW/ETHZ. (VAW/ETHZ – A. Bauder)

58 Unterer Grindelwald

2012: Luftbildaufnahmen am 27.8.2012, photogrammetrische Auswertung durch VAW/ETHZ. (VAW/ETHZ – A. Bauder)

2013: Luftbildaufnahmen am 23.9.2013, photogrammetrische Auswertung durch VAW/ETHZ. (VAW/ETHZ – A. Bauder)

59 Eiger

2012: Gletscher überschneit, was Messung leicht erschwerte (Eis oder Schnee auf Fels). Flacher Gletscher, gleichmässigerer Rand als Vorjahr. Den Punkt B der ältesten Messlinie haben wir gefunden und die Lücke 1938-62 rekonstruiert. (R. Zumstein)

2013: Gletscher ist mit ähnlichem Tempo weiter zurückgeschmolzen. Linker Rand der Gletscherzunge nicht klar sichtbar. (C Simeon)

60 Tschingel

2012: Der Gletscher ist im Zungenbereich flacher als im Vorjahr. Das Abschmelzen auf der linken, sonnigen Seite hat sich fortgesetzt, sodass in kurzer Zeit 2 weitere Punkte neben dem Gletscher liegen werden. (R. Zumstein)

2013: Der mittlere Bereich der Gletscherzunge ist stark abgeschmolzen, die Ränder haben sich wenig verändert. (C. Simeon)

61 Gamchi

2012: Der Gletscher löst sich in einzelne immer schmaler werdende Arme auf. In der Mitte fällt er in sich zusammen. (R. Descloux)

2013: Der Gletscher löst sich an der Front immer mehr in einzelne Zunge auf. (R. Descloux)

62 Schwarz

2012: Bei Pkt i_0 wurde Geröllmaterial ca. 3 m tief durch den Bach abgetragen. Fels wieder gut sichtbar. (E. Coleman Brantschen)

2013: Es sind viel Wasser und Geschiebe über den Gletscher gegangen. Das Eis hat nochmals deutlich an Mächtigkeit verloren, ist vielerorts richtiggehende in sich zusammengebrochen. Die Gletscherzunge ist durch den Wasserlauf auf grosser Länge mehr oder weniger in Längsrichtung zweigeteilt worden. Zudem ist der gesamte untere Teil der Zunge endgültig vom Gletscher abgetrennt worden. Das Gletscherende befindet sich nun rund 1 km weiter bergwärts (Luftlinie). (E. Coleman Brantschen)

64 Blümlisalp

2013: Letzte Gletscherreste sind unter dem Schutt (Punkt B). Kein zusammenhängender Gletscher feststellbar. (U. Fuhrer)

66 Tiefen

2012: Der Rückgang ist im südlichen Zungenbereich sehr ausgeprägt weil die unter Schutt liegende Eisdecke jetzt einbricht. Der Eisstrom im Bereich der Steilstufe zwischen 2640 und 2700 m.ü.M wird von Jahr zu Jahr schmäler. Damit wird der Zungenbereich nicht mehr ausreichend genährt und entwickelt sich zu einer Toteismasse. (J. Marx)

2013: Der Rückgang ist im südlichen Bereich (Punkt 8) sehr ausgeprägt. Die lange unter Schutt konservierte Eismasse fällt jetzt in sich zusammen. Der Tiefenbach hat sich infolge eines Hochwassers stark abgesenkt und ins Gletschervorfeld hineingefressen. Der flache See vom Vorjahr ist praktisch ausgelaufen. (J. Marx)

67 St. Anna

2012: Der gemessene Rückzug ist ausgeprägter als in den letzten Jahren. Die Mächtigkeit nimmt im Zungenbereich markant ab, womit sich der Rückzug wohl weiter beschleunigen wird. Hier muss heute eher von Schrumpfung als von Rückzug gesprochen werden. (J. Marx)

2013: Der Rückgang liegt im Rahmen der letzten Jahre. Die Ausaperung der obersten Nährgebiete ist in diesem Jahr weniger ausgeprägt. Die mit Vlies abgedeckte Schneerampe unterhalb der Bergstation ist im Gegensatz zu den Vorjahren weitgehend erhalten geblieben. (J. Marx)

68 Chelen

2012: Der Rückzug hat sich erneut beschleunigt, sodass die Messdistanzen bereits wieder relativ gross sind. Messpunkt C wurde für den Durchschnittswert nicht berücksichtigt, weil

der Messwert durch das seitliche Schrumpfen beeinflusst wird. Die Verbindung vom stark mit Schutt bedeckten Zungenbereich über die Felsstufe zum eigentlichen Gletscher ist markant schmäler geworden. Eine Trennung ist zu erwarten. (M. Planzer)

2013: Rückgang sehr ausgeprägt. Vor den Messpunkten D, E, F (von 2010) liegt eine Toteismasse, welche zum Gletscher noch knapp Kontakt hat. 5 neue Messpunkte sind eingerichtet worden. (M. Planzer)

69 Rotfirn

2012: Die Tendenz der letzten Jahre setzt sich beschleunigt fort. Im Nährgebiet hat ein eigentlicher Schrumpfungsprozess eingesetzt. (M. Planzer)

2013: Dank einer dicken Schuttauflage verzögert sich der Rückgang. Zungenbereich zeigt Einsackungen. (M. Planzer)

70 Damma

2012: Der Rückzug fällt verglichen mit dem Vorjahr etwas moderater aus. Mit der abnehmenden Neigung des Untergrundes nimmt die Mächtigkeit im Zungenbereich etwas zu, was zu einer Verzögerung des Abschmelzens führt. (M. Planzer)

2013: Rückgang ist etwas moderater geworden, weil sich die Zunge aus den steilsten Partien zurückgezogen hat. Die Toteisscholle im Talkessel zeigt starke Zerfallserscheinungen. (M. Planzer)

71 Wallenbur

2012: Das sehr grosse westliche Gletschertor ist über 15 m breit und über 10 m hoch. Es fliesst kein Wasser mehr aus diesem Tor heraus! Der Hauptbach kommt aus dem westlichsten Bereich des weniger deutlich ausgebildeten Tores in der Mitte der Gletscherzunge. (P. Kläger)

2013: Nach Jahren mit starkem Dickenverlust setzt jetzt eine Zunahme des Längenverlustes ein. Der von Schutt bedeckte Zungenbereich hungert jetzt zunehmend aus weil der Nachschub aus dem Nährgebiet ausbleibt. Westliches Gletschertor wurde im Sommer von Bergseite her durch Schneerutsch teilweise gefüllt. Die Gletscherzunge hat die letzten Jahre extrem Masse verloren, vor allem auf östlicher Seite, ist aber durch starke Geschiebeüberdeckung geschützt. (P. Kläger)

74 Griess

2012: Es lässt sich ein eigentlicher Schrumpfprozess beobachten. Der Zungenbereich hält sich dank Schuttauflage erstaunlich lange am Leben. (B. Annen)

2013: Der ganze Zungenberich befindet sich in einem Zerfallsprozess mit Einsackungen und Löchern. (B. Annen)

75 Firnalpeli

2013: Gletscherzunge schneebedeckt, keine Messung möglich (M. Meier)

76 Griessen

2013: Gletscherzunge schneebedeckt, keine Messung möglich (M. Meier)

77 Biferten

2013: Die Messung 2013 gehört zu den wohl speziellsten Erhebungen seit meiner Messkarriere am Bifertengletscher. Nachdem ich im 2012 leider keinen passenden Termin mit einem Gehilfen fand war dies alles ganz anders. Erstens war dieses Jahr die Suche nach einem Gehilfen überhaupt kein Thema, vielmehr hat sich der pensionierte Metzgermeister Hansruedi Hösli von Ennenda beim Radeln Richtung Klausenpass bei mir während der Arbeit erkundigt, ob er sich einmal bei einer Messung bei den Gletschern betätigen dürfe. Dies bejahte ich natürlich sofort und so war ich dieses Problem der Helfer für einmal los, für mal ihm der Zeitpunkt der Messung ziemlich egal war, es könne auch unter der Woche sein, so seine Worte. Das Wochenende vom 10. August schien von den Witterungsverhältnissen ideal und zeitlich sicherlich auch für den Gletscher günstig, da er da sicher ausgeapert und schneefrei daliegen würde. So verabredeten wir uns also auf diesen Samstag. Gemeinsam fuhren wir nach Linthal ins Tierfehd zur KLL um die jährlichen Vorarbeiten abzuwickeln um dann die Messung am Biferten zu starten. Bei herrlichem Wetter und wohl gelaunt fuhren wir nach Hintersand, natürlich mit dem Fotohalt bei der Sandrisi. Wir wunderten uns während wir uns bereit zum Aufstieg machten, dass die Bäche von Obersand und auch der Überlauf in Hintersand derart viel Wasser bringe und auch eine rege Helikopter-Bewegung hinterliess einige Fragezeichen. Die wunderbaren Verhältnisse mussten natürlich auch bildlich festgehalten werden und so wurde doch auch während dem Aufstieg zur Unterkunftshütte wacker geknipst. Kurz vor der Unterkunftshütte bemerkten wir, dass da einige KLL Leute bereits vor Ort waren, eine Störung bei den Fassungen musste behoben werden, darum das viele abfliessende, ungenutzte Wasser wie auch die Helikopterflüge. Uns kam diese Situation entgegen, durften wir mit ihnen zusammen einen Znünihalt in der Unterkunftshütte einlegen, dies natürlich mit Kaffee und allem Drum und Dran. Nach dieser Rast und dem "fassen" des Stativs, verschieben wir uns hinauf zur Station 2003 unserem Ausgangspunkt. Beim Stationieren erkläre ich Hansruedi das Vorgehen und wie er mir die Daten übermitteln könne. "So nun können wir beginnen" so meine Worte, "jetzt brauche ich nur noch das Instrument zu starten und dann nichts wie los zur Orientierung auf die Station E". Doch das Instrument bleibt in der Anzeige dunkel, es reagiert nicht. Na gut, denke ich, ist ja möglich, dass der Akku sich über Nacht entladen hat, weiter kein Problem, ich habe ja noch einen Ersatz dabei. Aber oha, auch der reagiert nicht auf meine Auslösebefehle. Da fliesst definitiv kein "Saft" oder eben Strom zum Instrument. Jegliche Versuche die Quelle zu aktivieren bleiben erfolglos. Was macht man in einem solchen Falle? Weit weg von Zivilisation und Ladestation etc. ist da sicherlich guter Rat teuer! Sind da gut 100 Meter weiter unter mir nicht "Elektrische" an der Arbeit?, ich frage da mal nach! Alles wird versucht bis zur Variante des Hochfliegens der Ladestation, doch schliesslich müssen wir kapitulieren, die Zeit ist bereits weit fortgeschritten und leider müssen wir die Messung für diesen Samstag streichen. Das Stativ stellen wir wieder in die Unterkunftshütte zurück, ein zweiter Versuch wird sicherlich bald folgen. Lediglich den Theodoliten trage ich noch mit, während dem ich Hansruedi den Gletscher aus nächster Nähe zeige und mein Messkonzept erkläre. So steigen wir wie üblich der Zunge entlang hinauf zur Station 20101 und dann über die Moräne hinaus zur Fridolinshütte. Dort geniessen wir den herrlichen Tag bei feinen Köstlichkeiten aus der Küche. Ärgern über die Technik und die verpasste Messung lohnt sich kaum, denn ändern kann man es nun doch nicht mehr. So steigen wir denn ohne Messresultate hinunter nach Hintersand zum Bus und beenden diese Exkursion. Hansruedi ist aber sofort wieder dabei, denn die Gletschermesserei hat ihn gepackt, so nahe und bewusst habe er den Gletscher noch nie wahrgenommen, ich bin gerne nochmals dabei. Ich habe natürlich gerne diese Worte bei mir abgelegt, denn wie oft musste ich doch nach Helfern suchen. Also wir kommen wieder und dies sicherlich möglichst bald um die warme und angenehme Zeit am Gletscher auch zu nutzen. 14 Tage später heisst es plötzlich, es könnte Schnee geben bis in tiefe Lagen, aber eine Föhnlage verhindere dies noch, Hansruedi weilt genau in dieser Zeit noch in den Ferien. Darum muss ich Roman Müller mein treuster Gehilfe motivieren, die Messung am Biferten noch vorzunehmen, ehe der Schnee alles überdeckt. Das genaue Studium der Wetterkarten zeigt eine markante Kaltfront die aus Westen heranzieht und bis zum Nachmittag auch das Glarnerland erreichen wird. Unter dem Druck dieser Kaltfront starten Roman und ich am Samstag den 24.08.2013 bereits um 06.00 Uhr in Glarus um die Zeit optimal ausnützen zu können, dies zu den "normalen" Abläufen also eine Stunde früher. Nach einer Stunde Anfahrt und der obligaten Fotostrecke an der Sandrisi diesmal sogar noch mit dem Mond als Sujet und $1\frac{1}{2}$ Stunden Fussanstieg, mit Fassen des Stativs und einem "neuen" Theodoliten dem TCRM 1101 und vor allem besseren Akkus im Rucksack, beginnen wir bereits um 09.00 Uhr die Messungen. Die Temperatur angenehm, der Himmel bereits etwas überzogen, aber noch keinesfalls beängstigend. Die Messung verläuft planmässig und ohne Zwischenfälle im üblichen Schema. Erste Station 2003: von dort erfassen wir den Gletscherrand vom östlichsten Ende bis zum Gletschertor 1. Nach Umgehung des reissenden Gletscherbaches folgt die Fortsetzung der Zungenerfassung bis wiederum hinauf zum Gletschersee, der zwischenzeitlich aber bereits ausgelaufen ist, weil das Wasser wohl stärker war als der Moränensand der das Ufer des Sees bildete. Sofortiger Wechsel des Operateurs über den Gletscherrücken über dem Gletscherbach 1 hinauf zum Punkt 20101 zur zweiten Stativstellung. Von dort, erfassen wir den restlichen Gletscherteil den wir zu kartieren gedenken. So können wir schliesslich um 11.30 Uhr unsere Messung, trocken und bei passablen äusseren Bedingungen beenden. Der Ausstieg über die Becker-Streiff Moräne ist einmal mehr eine Herausforderung, aber die Fridolinshütte und das sich mehr und mehr verschlechternde Wetter lässt uns auch diese Prüfung erfolgreich beenden. So dass wir das Stativ einmal mehr im Zwischenlager deponieren können, bis es dann von KLL Mitarbeitern irgendwann wieder zum Startplatz befördert wird. Bei Kuchen und Kaffee mit der Hüttenwärtin Gabi Aschwanden plaudern und fachsimpeln wir weiter über das Weitere mit dem Bifertengletscher. Eine Stunde vergeht da im Fluge, dunkle Wolken und auffrischender Wind veranlassen uns schliesslich, möglichst rasch abzusteigen um der nahenden Kaltfront nicht noch in die "Hände" zu laufen. Um 14.40 Uhr treffen wir, trocken und glücklich über die gelungene Messung beim Bus in Hintersand ein. Bereits beim Verlad des Materials beginnt es zu tropfen und bei der Fahrt Richtung Tierfehd und Linthal setzt der Regen ein. Ein letztes Bild vom Tödi, von der Sandrisi, zur Dokumentation, wie schnell das Wetter in den Bergen eben ändern kann und dann ab nach Hause. Die Kaltfront mit heftigen Regengüssen nimmt das Glarnerland in Besitz. Das Studium der Wettervorhersage und der um eine Stunde vorverlegte Start hat uns wahrlich erfolg gebracht und so geht eine eindrückliche Messkampagne 2013 zu Ende. Die Auswertung der ca. 60 gemessenen Punkte im Büro zeigt weiterhin nur negative Zahlen. Da die Epoche noch über zwei Jahre erfolgt, ist diese auch recht hoch: das Mittel des Rückganges beträgt bei einer gemessenen Breite von 627.3 m und einer Minusfläche -8261 m² doch happige -13.2 m. Der tiefste Punkt (1963.1 m.ü.M) ist etwas östlich des Gletscherbaches 1 zu finden, da wir uns dieses Jahr dort eingehend umgeschaut haben und zum Schluss kamen, dass dort wohl auch noch Gletscher unter dem Geröll liegen muss. Dies erklärt auch das Fallen des tiefsten Punktes um 6.7 m. Das Gletschertor ist aber wiederum um 1.3 m weiter hinauf gestiegen, dies entspricht somit dem Rückgang. Beim Gletscherbach 2 ist die Höhe neu bei 2004.1 m. Hier bewegt sich die ganze Sache wohl momentan immer etwas hinauf und auch wieder herunter, diesmal um 10 m herunter. Vielleicht

war aber auch die Messung 2011 auf dem Gletscher und nicht im Gletscherbach. (H. Klauser)

78 Limmern

2012: Punkt 1-3: stark schuttbedeckt. Etwas Neuschnee im Zungenbereich (U. Steinegger)

2013: Messpunkte 1-3: stark schuttbedeckt. Verhältnisse: Gletscherzunge aper, etwas Neuschnee ab 2500 m.ü.M, Firnschnee ab etwa 2600 m.ü.M (U. Steinegger)

79 Sulz

2012: Ein Markanter Felsblock befindet sich an der linken Seite vor der Gletscherzunge. Keine Spuren erkennbar, wie er dort hingekommen ist. Lässt sich in Zukunft als Referenzpunkt E statt Basispunkt C verwenden. (M. Schaller)

2013: Gletscher: deutliche Abnahme der Mächtigkeit im Bereich der Gletscherzunge, sowie überhäuft mit Geröll – besonders am Gletscherende. Basispunkt Nr. E wurde neu eingeführt. E wurde per GPS eingemessen (Genauigkeit +/-1 m) – von Stein E wurde mit dem Massband horizontal zur Gletscherzunge gemessen. (M. Schaller)

80 Glärnisch

2012: Das Jahr 2012 war ein Jahr, da hatte ich wieder etwelche Mühe einen Gehilfen zu finden und auch die schönen Wochenenden die sich zu einer Gletschermessung eignen, waren eher dünn gesät, da ich als Musikant und Sportbegeisterter auch das eine oder andere Wochenende von mir her "belegt" hatte. Schliesslich schneite es auch plötzlich noch an und so fand ich mich bereits mit dem Gedanken ab, dass wohl dieses Jahr die beiden Gletscher von mir her unbesucht und auch unvermessen bleiben. Am 17. November 2012 finde ich aber schliesslich einen "wagemutigen" Gehilfen, es ist einmal mehr Roman Müller, der mit mir das Experiment Glärnischgletscher in Angriff nimmt. Die Anfahrt ins Rossmattertal ist gut zu bewältigen. An einigen Stellen hat der Winter seine ersten Vorboten deponiert: Eis und Schnee sind an den Schattenstellen bereits sichtbar. Der erste Blick dann von Wärben, unserer Endstation, hinauf zur Glärnischhütte, lassen uns hoffnungsvoll die Lasten bereitstellen, dass unsere Messung auch zu spätem Datum noch gelingen könnte, denn bis zur Hütte ist es schneefrei und aper. So steigen wir frohgelaunt und gespannt, was uns oben erwartet in Richtung Glärnischfirn. Um diese Zeit ist natürlich die Hütte bereits "winterfest" gemacht und die Hüttencrew nicht mehr im Einsatz. So steigen wir unbeirrt weiter bei der Hütte vorbei Richtung "ewiges Eis". Etwas oberhalb der Hütte, liegt dann etwas Schnee, der uns aber noch kein Kopfzerbrechen bereitet. Die Steilstufe über der Glärnischhütte ist mit der nötigen Vorsicht noch gut zu meistern und so gelangen wir schliesslich zu den Gletscherschliffen unterhalb des Gletschers. Der Weg zur Station 14 erweist sich schliesslich noch anstrengender und intensiver als angenommen (diesmal steigt der Gehilfe mit mir zur Ausgangstation), hier ist der Schnee wohl pulvrig aber dies dann doch knietief und so verdeckt er uns je nach Steilheit des Geländes auch die Tritte und den Weg. Zum Glück, habe ich die Station 14, auf der markanten Felsrippe ausgesucht, so können wir diese auch recht gut ausmachen und finden. Dort angelangt, brauchen wir beide eine kleine Verschnaufpause, bei der wir uns wieder auf Vordermann bringen, das heisst; trockene Kleider überziehen und verpflegen. Da der südlichste Teil des Gletschers derart stark verschneit ist, verzichten wir aus Vorsicht, diese zu erfassen. So läuft mein Gehilfe Roman schliesslich ab der Felsrippe und der Station 14 in Richtung Nord-Ende des Gletschers. Die Gletscherzunge ist trotz 40 bis 50 cm Neuschnee gut auszumachen und ich meine, dass wir auch die Messung 2012 sicherlich als bestens brauchbare Messung ablegen können. Gletscherbach und andere Details die am schneefreien Gletscher auszumachen sind, konnten wir dann leider nicht erfassen. Nachdem die Gletscherzunge vermessen war, steigt Roman auf die grosse Fels-Kuppe über dem Gletscher und so können wir auf der Station 13 noch die Orientierung erfassen. Station 12 findet er im Schnee nicht, doch die Kontrollrichtung zum Gipfelkreuz über dem Pragelpass gibt mir Gewähr, dass auch die Orientierung richtig vermessen ist. Den tiefsten Punkt finden wir gegenüber dem letzten Jahr um gut einen halben Meter höher, bei 2345.1 m.ü.M. Die riesige Minusfläche zum Vorjahr von -5581.8 m² mit der gemessenen Breite von diesmal nur gut 310 m ergibt schliesslich den grossen schwund von -18.0 m. Da haben die warmen Temperaturen die auch in den "Wintermonaten" herrschen (Nullgradgrenze teilweise bis 3000 m.ü.M) dem Gletscher wohl arg zugesetzt. Nach diesem aufregenden aber auch anstrengenden Erlebnis am Glärnischfirn, schliesslich noch bei wirklich ertragbaren Temperaturen und bestem Wetter, geniesst der Gehilfe etwas oberhalb der Station 12 die wohlverdiente Rast, bis auch der Operateur, also meine Wenigkeit, zu ihm nachgezogen bin. Dabei findet er Steinskulpturen die "das Herz" höher schlagen lassen. Ja, wenn man die Augen offen hat, kann man in der Natur so viele tolle Sachen entdecken. Gut aufgewärmt, von der Sonne die an die Gletscherschliffe "brennt" steigen wir glücklich, aber auch etwas müde vom Schneestapfen hinab ins Rossmattertal. Den Abstieg bewältigen wir ohne nennenswerte Vorkommnisse und so kommen wir wohlbehalten schliesslich zurück zu unserem Ausgangspunkt. Die Gletschermessung 2012 in "Extremis" gehört so bereits wieder der Vergangenheit an. (H. Klauser)

2013: Gestärkt steigen wir die zweite Steilstufe empor und erklimmen diesmal beinahe locker die Felsrippe mit der Station 14, um dort mit der Messung zu beginnen. Der schweisstreibende Aufstieg, veranlasst uns aber in Gletschernähe sofort, zum trockene Kleider anziehen und zu einer kurzen Erfrischung, bevor die eigentliche Arbeit beginnt. Während Roman und Susanne von der Felsrippe absteigen und sich zum Süd Ende des Gletschers "vorkämpfen", stationiere ich den Theodoliten über der Station 14. Dabei ist zu erwähnen, dass ich bereits wiederum mit einem neueren Modell, den Gletscher vermesse, nämlich mit dem TCRM 1101 (Leica), da sich beim TC 605 L, leider bereits die Batterien derart stark entladen, dass eine zuverlässige Messung nicht mehr gewährleistet ist, und so dann eine Begehung am Gletscher ohne Erfolg abgebrochen werden muss, wie mir dies am Bifertengletscher eben erst geschehen ist. Da der TC 605L auch bei unseren täglichen Vermessungsarbeiten nur gering im Einsatz steht, ist eine Erneuerung der Batterien nicht lohnenswert. Beim TCRM 1101 kann auch reflektorlos gemessen werden, so kann ich bei schwierig zugänglichen Punkten, sofern sie im Messbereich liegen ohne dass sich der Gehilfe in Gefahr begeben muss, eine Messung vornehmen. Die Registratur erfolgt über einen Chip, den ich dann direkt über den PC einlesen kann. Nach dem installieren des Instrumentes beginnen wir also mit der Vermessung der Gletscherzunge von Süd nach Nord. Für Susanne eine interessante Arbeit, die sie aufmerksam verfolgt und dabei auch noch mit der Materie Eis ganz eng in Kontakt kommt und dabei auch die nicht immer ungefährliche Arbeit ihres Mannes am Gletscher sehen kann. Roman klettert behände und routiniert an der Zunge des Gletschers entlang und übermittelt mir mittels Reflektor die Daten zur Berechnung der Koordinaten und Höhen eines jeden einzelnen Punktes am Zungen Ende. Mit 55 Punkten ist der Glärnischfirn dieses Jahr wiederum klar und eindeutig kartiert. Der schneefreie und apere Gletscher liegt optimal frei für die Messung, ebenso die Temperatur, die natürlich für den Gletscher eher zu mild, aber für uns Menschen ideal ist, um die Messung vorzunehmen. Die Vermutung und der Eindruck, dass auch dieses Jahr der Gletscher wohl nicht gewachsen ist, stimmt so nicht, denn die Berechnungen und der Vergleich über die Strecke Felsriff bis Nord Ende des Gletschers (2012 habe ich ja nicht die ganze Breite erfassen können) bringen einen Zuwachs zu Tage. Dieser beträgt zwar lediglich knappe 4 m (genau 3.9 m) und vielleicht auf die Messung 2012 im Schnee zurückzuführen, dass da die eine oder andere Spitze übersehen wurde. Der tiefste Punkt hat sich ebenfalls wieder etwas nach unten abgesenkt, so finden wir den bei 2344.8 m.ü.M. Gletscherbäche sind momentan zwei Stück auszumachen: der eine ziemlich mittig des Gletschers bei 2353.2 m.ü.M (Gletscherbach 1) und der Gletscherbach 2 etwas nördlich des tiefsten Punktes bei 2346.3 m.ü.M. Obwohl die Station 14 gut positioniert ist, ist es doch nicht ganz einfach den Gletscher dem Felsriff entlang Richtung Süden zu erfassen. Da muss ich mit Quer- und Längsverschiebungen wirklich alle Tricks aus der "Vermesserkiste" ziehen. Aber für die 3 bis 4 Punkte in diesem Bereich aufzunehmen, Johnt es sich kaum noch eine neue Station zu erstellen. Da die beiden Gehilfen wiederum mit mir zur Station 14 aufgestiegen sind, sind am Schluss der Messung noch die beiden Anschlusspunkte Station 13 und nachher Station 12 zu erfassen. Danach haben die zwei treuen Helfer eine Pause verdient, so dass ich ebenfalls die Station abbauen kann um zu ihnen nachzuziehen. Die Sonne hat sich an diesem Messtag eher etwas zurückgehalten, zwischendurch hatte ich bald etwas Bedenken, dass sich eine Schlechtwetterphase einstellt, doch die Bedenken waren umsonst und so konnten wir trocken und mit erträglichen Temperaturen die Messung 2013 durchführen. Der Marschhalt nach einer guten halben Stunde beim Abstieg bei der Glärnischhütte und "ä bäümigä Z'Vesper" waren natürlich auch im 2013 ein Muss. Frisch gestärkt nahmen wir schliesslich noch den Abstieg nach Wärben unter die Füsse. Beim Bus angelangt, kann ich die Messung 2013 einmal mehr mit Erfolg beenden. Ein interessanter Tag mit vielen tollen Eindrücken am Glärnischfirn ist leider bereits wieder vorbei. Danke den beiden Helfern und auch 2014 wird wohl der Vermesser wiederum den Glärnischfirn und seine Bewegungen beobachten. Zwei müde Gipfelstürmer waren dann um unsern Taxidienst hinaus bis zum Klöntalersee froh, denn der Fussmarsch von Wärben bis dorthin verbraucht doch noch einiges an Energie und so haben wir nebst der Beobachtung des Gletschers auch da noch unsere Sympathien geholt. Was uns schliesslich 2014 wieder alles erwartet steht noch in den Sternen, der Glaube an einen Wachstum der Gletscher ist doch eher klein, auch wenn es dieses Jahr beinahe so aussieht. (H. Klauser)

81 Pizol

2012: Das Gletschervorfeld wies wie im Vorjahr noch einige Schneefelder auf. Dies behinderte die Messungen aber nicht. Dieses Jahr erfolgte die Messung ab der letztes Jahr neu eingerichteten D-Linie. In den Linien 2 und 3 stellten wir ein Altschneefeld fest. Den Gletscherrand setzten wir dabei auf den im Gelände klar erkennbaren Neigungswechsel fest. Es kann sein, dass wir damit in der Linie 3 den Rand nicht sauber getroffen haben (relativ grosse Differenz im Vergleich zu 2011). Unsere Kontrolle mittels einer kleineren Grabarbeit erreichte aber im Schneevorfeld kein Blankeis womit wir von einer korrekten Messung 2012 ausgehen. Die 2011 erwähnten Felsen im oberen Bereich des Gletschers beurteilen wir definitiv als anstehenden Felsen. Aus meiner Sicht ist es aber weiterhin richtig, den grösserflächigen Teil des Gletschers, und damit den unteren Teil, als den zu messenden Gletscher zu betrachten. (Th. Brandes)

2013: Im Vorfeld des Gletschers hat sich ein Firnfeld gebildet, teils überführt mit Schutt, teils dürfte darunter auch noch älteres Eis sein. (Th. Brandes)

82 Lavaz

2012: Gletscher hat sich von Vorfeld (Ebene) zurückgezogen, "hängt" nun am Hang. Schmelzvorgang kaum messbar, aber vorhanden. (R. Lutz)

83 Punteglias

2012: Gletscher besteht immer noch aus 3 Gletscherkörpern, die alle in Richtung SO fliessen. Der mächtigste ist ganz im Osten und ist von braunem Schutt bedeckt. Dieser Teil ist mit dem "oberen" Gletscher noch verbunden. In diesem, östlichen Teil, ist eine gewisse Dynamik vorhanden, im Vergleich zum restlichen Gletscher jedoch gering. Westlich davon steigt die Schmelz-Dynamik an, viel ist in Bewegung, viel ändert sich. Das Tälchen zwischen der östlichen und der mittleren Gletscherzunge wird länger und breiter. Die mittlere Gletscherzunge wird immer schmäler und schmilzt immer schneller. Es ist schwierig ihre Grenzen zu bestimmen, da sie total von Schutt bedeckt ist. Wir fanden dank einem kleinen Abbruch am Gletscherrand wieder Eis. Es zeigt sich, dass wir die Gletscherzunge zu weit hinten vermutet haben. Darum erscheint sie gegenüber 2011 wieder weiter vorne. Auf dem Gletscherkörper selber, rund 150 m von der Gletscherzunge entfernt ist ein beachtlicher Teil in sich zusammengebrochen. Es entstand eine Bruchlinie von rund 10 m Tiefe. Von den Seiten bricht der Gletscher weiter ein. Je nachdem kann sich bei einem solchen Einbruch Schmelzwasser temporär stauen. (Ch. Buchli)

2013: Der mächtigste, 3 Gletscherkörpern, der ganz im Osten ist von braunem Schutt bedeckt und mit dem "oberen" (oberhalb Felswand) noch verbunden. In diesem östlichen Teil an der Gletscherzunge ist im 2013 erstmals das Gletschereis sichtbar. Der Lawinenschnee 2012/13 am östlichen Rand ist nicht geschmolzen. Im Grenzbereich Gletscher und Lawine ist eine Grotte entstanden, in welcher man sich bewegen kann. Das Tälchen zwischen östlicher und mittlerer Gletscherzunge wird länger und breiter. Die Ränder stürzen seitlich ein und schmelzen dahin, was zu einer grossen Dynamik führt. Messung in diesem Bereich ist schwierig. Die mittlere Gletscherzunge wird immer schmäler und ist schwierig zu lokalisieren. Sie ist von Schutt bedeckt. An gewissen Stellen tritt Eis zum Vorschein, wo man vorher gedacht hat, es wäre kein Eis mehr vorhanden. So können die Abweichungen in den Messungen erklärt werden. Der Gletscher ist im 2013 nicht gewachsen, sondern die +7.25 m sind mit solchen Einschätzungen und mit Abbrüchen und seitlichem Fliessen des Gletschers verbunden. Der im 2012 entdeckte Einbruch auf dem Gletscherkörper hat sich vertieft und vergrössert. (Ch. Buchli)

86 Paradies

2013: Der geringe Vorstoss von 0.8 m ist vor allem auf den letztjährigen Schnee zurückzuführen. Im östlichen Bereich (ausserhalb des Messsektors) hat sich die frühere Zunge ausgebreitet. (C. Fisler)

87 Suretta

2012: Der grössere Rückgang gegenüber 2011 ist auf das Abbrechen einer "Zwischenzunge" im mittleren Bereich der Gletscherzunge zurückzuführen. (C. Fisler)

2013: Der Gletscher ist im Mittel um 11.4 m vorgedrungen. Insbesondere im mittleren Bereich (beim tiefsten Punkt) ist eine früher abgebrochene "Zwischenzunge" wieder dazu gewachsen. Ein Fotovergleich ergibt auch, dass die Mächtigkeit des Gletschers gleich geblieben ist. Die tiefen Gletscherspalten sind stark mit Schnee gefüllt worden. (C. Fisler)

88 Porchabella

2012: Die Messung erfolgte nach dem ersten Schneefall, aber bei sehr guten Verhältnissen. Die Ermittlung der Längenänderung erfolgte zentral auf der Basis der neu und einheitlich definierten Beobachtungssektore. (Chr. Barandun)

2013: Die Messung erfolgte nach dem ersten Schneefall, "Zweiteilung" des Gletschers im Bereich Piz Alpin. (Chr. Barandun)

89 Verstankla

2012: Die Oberfläche ist in den Randgebieten nach wie vor von viel Blockschutt überdeckt. In der schuttfreien Fläche, die allerdings kleiner als im 2010 zu sein scheint, lag das Eis blank. Insgesamt macht der Gletscher den Eindruck als sei er in sich zusammengefallen und hat vor allem in der Mächtigkeit verloren. (I. Aust)

90 Silvretta

2012: Luftbildaufnahmen am 20.8.2012, photogrammetrische Auswertung durch VAW/ETHZ. (VAW/ETHZ – A. Bauder)

2013: Luftbildaufnahmen am 22.8.2013, photogrammetrische Auswertung durch VAW/ETHZ. (VAW/ETHZ – A. Bauder)

91 Sardona

2012: Die Messung erfolgte ab den Punkten 1B, 2B, 3B, 4B und 5B mit dem Fadenmessgerät (Geländemass) im bisherigen Azimut 289 g (korrigierter Winkel). Durch den starken Wind dürfte die Längenmessung in der Tendenz leicht zu lang gemessen worden sein, da der Faden trotz seiner Feinheit vom Wind etwas 'gezogen' wurde; der 'Verzug' dürfte aber nicht massgebend sein. Auf der Linie 1 ist der Gletscher gegenüber 2011 praktisch in der gleichen Position. Durch den Schnitt mit dem Seitenrand der Gletscher(teil)zunge (welche selber bis unter den Messpunkt 1B reicht) liegt nach wie vor eine schleifende Schnittlinie vor mit den entsprechenden Unsicherheiten bezüglich Massgenauigkeit der Veränderung zwischen zwei Jahren. Die seitlichen Gletschertore, welche 2011 erstmals vorhanden waren, sind eher grösser geworden. Der Abschmelzprozesse am Rand dieser Zunge ist gross. Auf der Linie 5 weist der Gletscher ein sehr flaches Vorfeld auf. In diesem Bereich lag noch eine geschlossene Altschneedecke. (Th. Brandes)

2013: Die Messung erfolgte ab den Punkten 1B, 2B, 3B, 4B und 5B mit dem Fadenmessgerät (Geländemass) im bisherigen Azimut 289 g (korrigierter Winkel). Die Messung auf der Linie 1 legt einen massiven Rückgang nahe, nachdem von 2011 bis 2012 kaum eine Längenveränderung festgestellt wurde. Nach wie vor streicht die Linie entlang dem Seitenrand der längsten Zunge des Gletschers. Seit 2012 sind die "Seitentore" am Gletscher weitgehend verschwunden. Das festgestellte Mass ist also nicht 1:1 als Veränderung der Länge interpretierbar; die Verschmälerung der Zunge führt zu diesem deutlichen Rückgang. Da es sich um eine Teilzunge handelt, macht die Nutzung der Linie weiterhin Sinn. Linie 2: Eisrand nicht einfach eruirbar. Ein im 2012 noch verbundener Bereich hat sich abgetrennt, was den grossen Rückgang hier erklärt. Linie 3: Lage kaum verändert, dafür aber die Dicke deutlich wie ein Fotovergleich bestätigt. (Th. Brandes)

92 Roseg

2013: Reste von Eisstürzen der Jahre 2012 und 2013 noch vorhanden. (G. Bott)

93 Tschierva

2012: Toteis am linken Zungenrand (G. Bott)

2013: Felsriegel am linken Zungenrand freigeschmolzen. Sehr grosser Tschiervabach mit enormer Wasserführung! Links ist Zunge stark abgeschmolzen! (G. Bott)

94 Morteratsch

2013: See von 2012 vor der Gletscherzunge ist ausgelaufen. (G. Bott)

95 Calderas

2012: Einsturz bei Gwächte 2010 und Ablösung als Toteis. Felspartie in Zungenmitte wird immer breiter und länger. (G. Bott)

2013: Gwächte/Abbruch 2010 mit Firnschnee verfüllt. Felspartie in Zungenmitte wird immer markanter. (G. Bott)

96 Tiatscha

2012: Basislinie 70 m nach S verschoben, um Einsicht bis Gletscherzunge zu gewährleisten. (G. Bott)

2013: Basislinie 70 m nach S verschoben, um Einsicht bis Gletscherzunge zu erhalten. (G. Bott)

98 Lischana

2013: Aufgrund der starken Schuttbedeckung des Gletschers ist die Vermessung je länger je schwieriger. Das Resultat einer positiven Längenänderung ist nicht plausibel. (G.-C. Feuerstein)

103 Bresciana

2012: La parte terminale del ghiacciaio ha un andamento orizzontale ed è molto ripida. Solo rilievo fotografico neve sul fronte del ghiacciaio. (C. Valeggia)

104 Basòdino

2012: Controllato alcuni punti con profilo 2012, spessore di ghiaccio scomparso da 110 a 150 cm. Nel 2001 e 2011 abbiamo rilevato tutto il fronte del ghiacciaio come pure nel 2012 con un arretramento medio in dieci anni di oltre 160 metri, la parte centrale arriva anche a 290 metri. In futuro bisognerà spostare la zona del rilievo nella parte centrale del ghiacciaio. Il fronte ora misurato non rappresenta la situazione attuale. (C. Valeggia)

105 Rossboden

2012: Messpunkte nicht gefunden bzw. nicht zugänglich (M. Gerold)

2013: Messpunkte nicht mehr auffindbar bzw. erreichbar. (M. Gerold)

109 Alpetli (Kanderfirn)

2012: Grössere Felsblöcke frisch ausgeapert im Mittelteil der auslaufenden Gletscherzunge. (U. Fuhrer)

2013: Der fortschreitende Gletscher-Rückzug erreicht nun fast das breite Dolomitband. (U. Fuhrer)

111 Ammerten

2012: Die Messung bei P1 war diesmal positiv – wir sind dort so sehr am Rand, dass die Messung in Längsrichtung leider sehr einfach zu grossen Abweichungen führt. Das ist nicht ganz optimal. Der Mittelwert ist aussagekräftiger und der Vorstoss dieses Jahr nicht wirklich relevant. (W. Hodel)

112 Dungel

2012: Der Gletscher war vollständig von einer geringmächtigen Schneedecke überzogen. Das Vorfeld war mehrheitlich schneefrei und die Vermessung gelang deshalb ohne Probleme. Der direkt an die Zunge anschliessende See ist im Vergleich zu 2011 etwas grösser geworden. (A. Wipf)

113 Gelten

2012: Die Zunge war vollständig ausgeapert. Die ehemalige Hauptzunge ist noch schmaler geworden. Weiter östlich oberhalb einer Terrasse bildet der Gletscher eine breite, leicht gegen Nordosten abfallende Front. Im Westen stirnt der Gletscher auf ca. 2600 m.ü.M immer noch in einen kleinen See. Dieser hat sich gegenüber dem letzten Jahr leicht vergrössert. Mittlerweile hat sich ein sehr schönes Gletschertor ausgebildet. (A. Wipf)

114 Plattalva

2012: Bei Punkt 5 verläuft der Gletscherrand spitzwinklig zu Messrichtung ganzer Gletscher mit Neuschnee bedeckt, oberes Firngebiet verschwunden (U. Steinegger)

2013: Bei Punkt 5 verläuft der Gletscherrand spitzwinklig zu Messrichtung, Gletscherzunge mit Neuschnee bedeckt, Firnschnee meist bis zur Zunge (U. Steinegger)

115 Scaletta

2012: Auffällig ist wie der Felsriegel in der Mitte zwischen den 2 Gletscherteilen immer grösser wird. Im nördlichen Teil sind die Spalten am Zusammenschmelzen. (B. Teufen)

2013: Fixpunkt A war unter Murgangschutt begraben, wieder freigelegt. Wegen Lawinenschnee auf dem Gletscherende konnten keine Messungen gemacht werden. (B. Teufen)

117 Valleggia

2012: Controllato alcuni punti con profilo 2011, spessore di ghiaccio scomparso varia da 350 a 450 cm. (C. Valeggia)

118 Val Torta

2012: Il ghiacciaio è estinto (ghiacciaio morto) e non ha più una zona di alimentazione. Esiste ancora un nevaio (C. Valeggia)

119 Cavagnoli

2012: Controllato 3 punti con profilo anno 2011 spessore di ghiaccio scomparso 250 cm. La parte terminale del ghiacciaio continua a ritirarsi, ad appiattirsi e a perdere spessore favorita dal fatto che termina in una zona pianeggiante con un laghetto. Il ghiacciaio non dispone più di una zona di accumulo e la tendenza, in atto da parecchi anni, di dividersi in campi isolati di ghiaccio morto continua. Lo spessore di ghiaccio scomparso dal 2011 al 2012 varia da 210 a 250 cm. (C. Valeggia)

120 Corno

2012: La parte di ghiacciaio rimasta attiva con zona di accumulo e una di ablazione ha perso di spessore nel periodo 2011-2012 che varia da 160 a 430 cm. (C. Valeggia)

2013: Profilo non misurato. Considerata una superficie di ca. 70x80 m di ghiaccio morto, in quanto non più alimentata dal resto del ghiacciaio. (M. Soldati)

173 Seewjinen

2012: Luftbildaufnahmen am 20.9.2012, photogrammetrische Auswertung durch VAW/ETHZ im Auftrag der Kraftwerke Mattmark AG. (VAW/ETHZ – A. Bauder)

2013: Luftbildaufnahmen am 4.9.2013, photogrammetrische Auswertung durch VAW/ETHZ im Auftrag der Kraftwerke Mattmark AG. (VAW/ETHZ – A. Bauder)

174 Hohlaub

2012: Luftbildaufnahmen am 20.9.2012, photogrammetrische Auswertung durch VAW/ETHZ im Auftrag der Kraftwerke Mattmark AG. (VAW/ETHZ – A. Bauder)

2013: Luftbildaufnahmen am 4.9.2013, photogrammetrische Auswertung durch VAW/ETHZ im Auftrag der Kraftwerke Mattmark AG. (VAW/ETHZ – A. Bauder)

352 Croslina

2012: Controllato 3 punti con profilo 2011, spessore di ghiaccio scomparso varia da 220 a 280 cm. Il rilievo del profilo ha mostrato variazioni di spessore da 220 a 280 cm. Il ghiacciaio non dispone più di una zona di accumulo e la tendenza, in atto da parecchi anni è la sua estinzione. (C. Valeggia)

353 Camadra

2012: Controllato profilo longitudinale con anno 2011, spessore di ghiaccio scomparso mediamente di circa 150 cm. Il ghiacciaio non dispone piu di una zona di accumulo e la tendenza, in atto da parecchi anni è la sua estinzione. (C. Valeggia)

C Investigators

C.1 Length Variation (2013)

Glacier	No.	Investigator
Albigna	116	AWN/GR, Curdin Mengelt
Allalin	11	VAW/ETHZ, Andreas Bauder
Alpetli (Kanderfirn)	109	KAWA/BE, Ueli Fuhrer
Ammerten	111	Walter Hodel
Arolla (Mont Collon)	27	DWL/VS, François Fellay
Basòdino	104	SF/TI, Claudio Valeggia
Bella Tola	21	currently not observed
Biferten	77	Hanspeter Klauser
Blüemlisalp	64	KAWA/BE, Ueli Fuhrer
Boveyre	41	DWL/VS, James Medico
Breney	36	Jean-Jacques Chabloz
Bresciana	103	SF/TI, Claudio Valeggia
Brunegg (Turtmann)	20	DWL/VS, Alban Brigger
Brunni	72	AFJ/UR, Jann Marx
Calderas	95	AWN/GR, Giachem Bott
Cambrena	99	AWN/GR, Gilbert Berchier
Cavagnoli	119	SF/TI, Claudio Valeggia
Cheillon	29	DWL/VS, Olivier Bourdin
Corbassière	38	VAW/ETHZ, Andreas Bauder
Corno	120	SF/TI, Mattia Soldati
Croslina	352	SF/TI, Claudio Valeggia
Damma	70	AFJ/UR, Martin Planzer
Dungel	112	Andreas Wipf
Eiger	59	KAWA/BE, Rudolf Zumstein
En Darrey	30	DWL/VS, Olivier Bourdin
Fee (Nord)	13	DWL/VS, Urs Andenmatten
Ferpècle	25	DWL/VS, François Fellay
Fiescher	4	DWL/VS, Peter Aschilier
Findelen	16	VAW/ETHZ, Andreas Bauder
Firnalpeli (Ost)	75	AWL/OW, Marion Meier
Forno	102	AWN/GR, Curdin Mengelt
Gamchi	61	KAWA/BE, Roland Descloux
Gauli	52	KAWA/BE, Crest Simeon
Gelten	113	Andreas Wipf

Glacier	No.	Investigator
Giétro	37	VAW/ETHZ, Andreas Bauder
Glärnisch	80	Hanspeter Klauser
Gorner	14	Stefan Walther
Grand Désert	31	DWL/VS, François Vouillamoz
Grand Plan Névé	45	FFN/VD, JPh. Marlétaz
Gries	3	VAW/ETHZ, Andreas Bauder
Griess	74	AFJ/UR, Beat Annen
Griessen	76	AWL/OW, Marion Meier
Grosser Aletsch	5	VAW/ETHZ, Andreas Bauder
Hohlaub	174	VAW/ETHZ, Andreas Bauder
Hüfi	73	AFJ/UR, T. Arnold
Kaltwasser	7	DWL/VS, Martin Schmidhalter
Kehlen	68	AFJ/UR, Martin Planzer
Kessjen	12	VAW/ETHZ, Andreas Bauder
Lang	18	DWL/VS, Hans Henzen
Lavaz	82	AWN/GR, Renaldo Lutz
Lenta	84	AWN/GR, Bernard Riedi
Limmern	78	Urs Steinegger
Lischana	98	AWN/GR, Gian Cla Feuerstein
Lämmern	63	KAWA/BE, Christian von Grünigen
Mittelaletsch	106	currently not observed
Moiry	24	DWL/VS, François Fellay
Moming	23	DWL/VS, François Fellay
Mont Durand	35	Jean-Jacques Chabloz
Mont Fort (Tortin)	32	DWL/VS, François Vouillamoz
Mont Miné	26	DWL/VS, François Fellay
Morteratsch	94	AWN/GR, Giachem Bott
Mutt	2	Ueli Wittorf
Oberaar	50	Flotron AG
Oberaletsch	6	DWL/VS, Christian Theler
Oberer Grindelwald	57	VAW/ETHZ, Andreas Bauder
Otemma	34	Jean-Jacques Chabloz
Palü	100	AWN/GR, Gilbert Berchier
Paneyrosse	44	FFN/VD, JPh. Marlétaz
Paradies	86	AWN/GR, Cristina Fisler
Paradisino (Campo)	101	AWN/GR, Gilbert Berchier
Pizol	81	KFA/SG, Thomas Brandes
Plattalva	114	Urs Steinegger
Porchabella	88	AWN/GR, Christian Barandun
Prapio	48	FFN/VD, Jacques Binggeli
Punteglias	83	AWN/GR, Christian Buchli
Khone	1	VAVV/EIHZ, Andreas Bauder
Ried	17	DWL/VS, Peter Rovina
Koseg	92	AVVN/GR, Giachem Bott
Rossboden	105	DWL/VS, Marco Gerold
Rotfirn (Nord)	69	AFJ/UR, Martin Planzer

Glacier		No.	Investigator
Rätzli		65	currently not observed
Saleina		42	DWL/VS, James Medico
Sankt Anna		67	AFJ/UR, Jann Marx
Sardona		91	KFA/SG, Thomas Brandes
Scaletta		115	Bernardo Teufen
Schwarz		62	KAWA/BE, Evelyn Coleman Brantschen
Schwarzberg		10	VAW/ETHZ, Andreas Bauder
Seewjinen		173	VAW/ETHZ, Andreas Bauder
Sesvenna		97	AWN/GR, Gian Cla Feuerstein
Sex Rouge		47	FFN/VD, Jacques Binggeli
Silvretta		90	VAW/ETHZ, Andreas Bauder
Stein		53	KAWA/BE, Crest Simeon
Steinlimi		54	KAWA/BE, Crest Simeon
Sulz		79	AW/GL, Marina Schaller
Suretta		87	AWN/GR. Cristina Fisler
Tiatscha		96	AWN/GR. Giachem Bott
Tiefen		66	AFJ/UR. Jann Marx
Trient		43	Jacques Ehinger
Trift (Gadmen)	55	VAW/ETHZ. Andreas Bauder
Tsanfleuron	/	33	DWL/VS. François Fellav
Tschierva		93	AWN/GR Giachem Bott
Tschingel		60	KAWA/BE, Rudolf Zumstein
Tseudet		40	DWL/VS_lames Medico
Tsidiiore Nouv	e	28	DWL/VS_François Fellav
Turtmann	-	19	DWI /VS Alban Brigger
Unteraar		51	Flotron AG
Unterer Grinde	lwald	58	VAW/FTHZ Andreas Bauder
Val Torta		118	SE/TL Claudio Valeggia
Valleggia		117	SE/TI. Claudio Valeggia
Valsorev		.39	DWL/VS_lames Medico
Verstankla		89	AWN/GR Ines Aus
Vorab		85	AWN/GR_Matthias Kalberer
Wallenbur		71	AF I/UR Pius Kläger
Zinal		22	DWI /VS François Fellav
Zmutt		15	currently not observed
			-
AFJ/UR	Amt für Fo	orst und J	lagd, Uri
AWN/GR	Amt für W	ald und N	laturgefahren, Graubünden
AW/GL	Abteilung \	Nald, Gla	rus
AWR/OW	Amt für W	ald und F	Raumentwicklung, Obwalden
DWL/VS	Dienststelle Wallis /Vala	e für Wal vis	d und Landschaft/Service des forêts et du paysage,
FFN/VD	Service des	forêts, d	le la faune et de la nature. Vaud
KAWA/BE	Amt für W	ald, Bern	· · · · · · · · · · · · · · · · · · ·
KFA/SG	Waldregion 3 Sargans, St. Gallen		
SF/TI	Sezione for	estale, T	icino
VAW/ETHZ	Versuchsan	stalt für	Wasserbau, Hydrologie und Glaziologie, ETH Zürich

C.2 Mass Balance and Velocity

Glacier	No.	Investigator
Allalin	11	VAW/ETHZ, Andreas Bauder
Basòdino	104	Giovanni Kappenberger
Clariden	141	Giovanni Kappenberger
Corbassière	38	VAW/ETHZ, Andreas Bauder
Findelen	16	DGUF / GIUZ, Matthias Huss, Nadine Salz-
		mann, Gwendolyn Leysinger-Vieli
Giétro	37	VAW/ETHZ, Andreas Bauder
Gries	3	VAW/ETHZ, Martin Funk
Grosser Aletsch	5	VAW/ETHZ, Andreas Bauder
Hohlaub	174	VAW/ETHZ, Andreas Bauder
Oberaar	50	Flotron AG
Pizol	81	VAW/ETHZ / DGUF, Matthias Huss
Plaine Morte	65	DGUF, Matthias Huss
Rhone	1	VAW/ETHZ, Andreas Bauder
Sankt Anna	67	DGUF, Mauro Fischer
Schwarzberg	10	VAW/ETHZ, Andreas Bauder
Silvretta	90	VAW/ETHZ, Andreas Bauder
Tsanfleuron	33	DGUF, Matthias Huss
Unteraar	51	Flotron AG

Flotron AG	Flotron AG, Meiringen
VAW/ETHZ	Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie,
	ETH Zürich
GIUZ	Geographisches Institut, Universität Zürich
DGUF	Département des Géosciences, Université de Fribourg